版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年浙江省杭州市余杭区英特外国语学校八年级下册数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.化简(-1)2-(-3)0+得()A.0 B.-2 C.1 D.22.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+23.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C. D.4.如图,在中,,点在上,,若,,则的长是()A. B. C. D.5.正方形ABCD内有一点E,且△ABE为等边三角形,则∠DCE为()A.15° B.18° C.1.5° D.30°6.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣37.如图,正比例函数y1=-2x的图像与反比例函数y2=kx的图像交于A、B两点.点C在x轴负半轴上,AC=AO,△A.-4 B.﹣8 C.4 D.88.如图,以正方形的顶点为直角顶点,作等腰直角三角形,连接、,当、、三点在--条直线上时,若,,则正方形的面积是()A. B. C. D.9.下列分解因式,正确的是()A. B.C. D.10.如图,的对角线与相交于点,,垂足为,,,,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为_____.12.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。13.关于x的方程=1的解是正数,则m的取值范围是________
.14.已知函数是关于的一次函数,则的值为_____.15.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的为_____º.16.将一次函数y=5x﹣1的图象向上平移3个单位,所得直线不经过第_____象限.17.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.三、解答题(共66分)19.(10分)(1)如图,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC.(2)如图,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,作FE⊥PC,垂足为E,交CG于点N,连接DN,求∠NDC的度数.20.(6分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(3)求菱形AFCE的周长.21.(6分)先化简,再求值:其中,22.(8分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.(1)求证:△AOD≌△BOE;(2)若DC=DE,判断四边形AEBD的形状,并说明理由.23.(8分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?24.(8分)已知与成正比例,(1)y是关于x的一次函数吗?请说明理由;(2)如果当时,,求关于的表达式.25.(10分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.26.(10分)如图,直线与轴交于点,与轴交于点,与直线交于点,点的横坐标为3.(1)直接写出值________;(2)当取何值时,?(3)在轴上有一点,过点作轴的垂线,与直线交于点,与直线交于点,若,求的值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
先利用乘方的意义、零指数幂的性质以及二次根式的性质分别化简,然后再进一步计算得出答案.【详解】原式=1-1+1=1.故选:D.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.2、B【解析】试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换3、B【解析】
根据平行线的性质以及对顶角相等的性质进行判断.【详解】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选B.【点睛】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.4、C【解析】
根据勾股定理求出斜边长,根据直角三角形的性质解答.【详解】在Rt△ABC中,∠ACB=90°,∴AB==5,∵∠ACB=90°,AD=BD,∴CD=AB=,故选C.【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.5、A【解析】
解:∵△ABE为等边三角形,∴∠EAB=60°,∴∠EAC=40°,又∵AE=AC,∴∠AEC=∠ACE==75°,∴∠DCE="90°-75°"=45°,故选A.考点:4.正方形的性质;4.等边三角形的性质;4.三角形的内角和.6、D【解析】
因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.7、B【解析】
根据等腰三角形的性质及反比例函数k的几何意义即可求解.【详解】过点A作AE⊥x轴,∵AC=AO,∴CE=EO,∴S△ACO=2S△ACE∵△ACO的面积为8.∴k=8,∵反比例函数过二四象限,∴k=-8故选B【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.8、C【解析】
由“ASA”可证△ABF≌△CBE,可得AF=CE=3,由等腰直角三角形的性质可得BH=FH=1,由勾股定理可求BC2=5,即可求正方形ABCD的面积【详解】解:∵四边形ABCD是正方形,△BEF是等腰直角三角形∴AB=BC,BE=BF,∠ABC=∠EBF=90°,∴∠ABF=∠EBC,且AB=BC,BE=BF∴△ABF≌△CBE(SAS)∴AF=CE=3如图,过点BH⊥EC于H,∵BE=BF=,BH⊥EC∴BH=FH=1∴CH=EC-EH=2∵BC2=BH2+CH2=5,∴正方形ABCD的面积=5.故选择:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证明△ABF≌△CBE是本题的关键.9、B【解析】
把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A.和因式分解正好相反,故不是分解因式;B.是分解因式;C.结果中含有和的形式,故不是分解因式;D.x2−4y2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.10、D【解析】
∵四边形ABCD是平行四边形,,.又,在中,,故选D.【点睛】错因分析:中等题。选错的原因是:1.对平行四边形的性质没有掌握;2.不能利用勾股定理的逆定理得出;3.未能利用的两种计算方法得到线段间的关系.二、填空题(每小题3分,共24分)11、-3【解析】
解:因为的两根为x1,x2,所以=故答案为:-312、三【解析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.13、m<﹣2且m≠﹣1【解析】
首先根据=1,可得x=-m-2;然后根据关于x的方程=1的解是正数,求出m的取值范围即可.【详解】∵=1,∴x=-m-2,∵关于x的方程=1的解是正数,∴-m-2>0,解得m<-2,又∵x=-m-2≠2,∴m≠-1,∴m的取值范围是:m<-2且m≠-1.故答案为:m<-2且m≠-1.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.14、-1【解析】
根据一次函数的定义,可得答案.【详解】解:由是关于x的一次函数,得,解得m=-1.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15、60°【解析】
首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【详解】解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°.故选A.【点睛】本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.16、四【解析】
根据一次函数图象的平移规律,可得答案.【详解】将一次函数y=5x﹣1的图象向上平移3个单位,得y=5x+2,直线y=5x+2经过一、二、三象限,不经过第四象限,故答案为:四。【点睛】此题考查一次函数图象与几何变换,解题关键在于利用一次函数图象平移的性质17、【解析】
首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.18、(-3,1)【解析】
根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.三、解答题(共66分)19、(1)见解析;(2)成立,理由见解析;(3)∠NDC=45°.【解析】
(1)根据已知条件易证△BCG≌△DCP,由全等三角形的性质可得CP=CG,∠BCG=∠DCP,即可求得∠DCP=∠BCG=22.5°,所以∠PCF=∠PCG+∠BCG=67.5°;在△PCG中,根据等腰三角形的性质及三角形的内角和定理求得∠CPG=67.5°,即可得∠CPG=∠PCF,由此证得PF=CF;(2)过点C作CH⊥CG交AD的延长线于H,先证得△BCG≌△DCH,可得CG=CH,再证得∠PCH=45°=∠PCG,利用SAS证明△PCH≌△PCG,即可得∠CPG=∠CPH,再利用等角的余角相等证得∠CPF=∠PCF,由此即可证得PF=CF;(3)连接PN,由(2)知PF=CF,已知EF⊥CP,由等腰三角形的三线合一的性质可得EF是线段CP的垂直平分线,根据线段垂直平分线的性质可得PN=CN,所以∠CPN=∠PCN,即可得∠PCN=∠CPN=45°,根据三角形的内角和定理求得∠CNP=90°,又因∠CDP=90°,即可判定点C、D、P、N在以PC为直径的圆上,根据同弧所对的圆周角相等即可得∠NDC=∠NPC=45°.【详解】(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)÷2=67.5°∴∠CPG=∠PCF,∴PF=CF;(2)如图,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵∠CDP=90°,∴点C、D、P、N在以PC为直径的圆上,∴∠NDC=∠NPC=45°.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,解决第(3)问的关键是证明点C、D、P、N在以PC为直径的圆上.20、(1)详见解析;(2)详见解析;(3)20cm.【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.【详解】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)证明:∵△AOE≌△COF,∴OE=OF,∵OA=OC,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴平行四边形AFCE为菱形;(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得x=1.所以菱形AFCE的周长为1×4=20cm.【点睛】本题考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,矩形的性质等知识.根据勾股定理并建立方程是解题的关键.21、【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,然后利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【详解】解:原式====,把代入,得:原式=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22、(1)证明见解析;(2)四边形AEBD是矩形.【解析】
(1)利用平行线得到∠ADO=∠BEO,再利用对顶角相等和线段中点,可证明△AOD≌△BOE;(2)先证明四边形AEBD是平行四边形,再利用对角线相等的平行四边形的矩形,可判定四边形AEBD是矩形.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠ADO=∠BEO.∵O是BC中点,∴AO=BO.又∵∠AOD=∠BOE,∴△AOD≌△BOE(AAS);(2)四边形AEBD是矩形,理由如下:∵△AOD≌△BOE,∴DO=EO.又AO=BO,∴四边形AEBD是平行四边形.∵DC=DE=AB,∴四边形AEBD是矩形.【点睛】本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定和性质,解决这类问题往往是把四边形问题转化为三角形问题解决.23、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30-a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度电视剧拍摄聘用一线影视演员合同
- 2025年度空调设备安装与环保认证服务合同
- 二零二五年度各类合同:教育培训机构招生订金协议
- 2025年度二零二五年度家族财富传承父母赠与子女房产合同
- 2025年度生态农业贷款委托支付合同
- 二零二五年度装修工程验收及验收责任合同
- 二零二五年度石场承包合同模板(含安全生产责任书)
- 2025年度房屋租赁押金及定金合同模板
- 二零二五年度中式面馆转让合同
- 2025年健身服务合同仲裁协议
- 2025江苏太仓水务集团招聘18人高频重点提升(共500题)附带答案详解
- 2024-2025学年人教新版高二(上)英语寒假作业(五)
- 江苏省泰州市靖江市2024届九年级下学期中考一模数学试卷(含答案)
- 沐足店长合同范例
- 《旅游资料翻译》课件
- 《鼻咽癌的诊治》课件
- 2024年天津市中考英语试题卷(含答案)
- 有关信用证的案例分析
- 水中大肠杆菌的检测实验报告
- 智慧体育场馆建设方案
- 避暑旅游目的地评价指标、阈值和评价等级表、人体舒适度、度假气候指数和旅游气候指数计算方法
评论
0/150
提交评论