版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年新疆生产建设兵团农八师一四三团第一中学八年级数学第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误2.如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为()A.3 B.4 C.5 D.63.如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A.1 B. C.2 D.4.已知等腰三角形的两边长是5cm和10cm,则它的周长是()A.21cmB.25cmC.20cmD.20cm或25cm5.下列语句描述的事件中,是不可能事件的是()A.只手遮天,偷天换日 B.心想事成,万事如意C.瓜熟蒂落,水到渠成 D.水能载舟,亦能覆舟6.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.7.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)8.(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm9.重庆、昆明两地相距700km.渝昆高速公路开通后,在重庆、昆明两地间行驶的长途客车平均速度提高了25km/h,而从重庆地到昆明的时间缩短了3小时.求长途客车原来的平均速度.设长途客车原来的平均速度为xkm/h,则根据题意可列方程为()A.700x-C.700x-10.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是()A.等腰梯形 B.直角梯形 C.菱形 D.矩形二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC边上时,∠CAE的度数为___________.12.如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.13.如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.14.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.15.化简______.16.)如图,Rt△ABC中,C=90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.17.如图,在中,点分别在上,且,,则___________18.如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.三、解答题(共66分)19.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.20.(6分)计算(1)×(2)()0+-(-)-221.(6分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;22.(8分)如图,已知▱ABCD的对角线AC、BD相交于点O,其周长为16,且△AOB的周长比△BOC的周长小2,求AB、BC的长.23.(8分)已知反比例函数y=的图象经过点A(x1,y1)和B(x2,y2)(x1<x2)(1)若A(4,n)和B(n+,3),求反比例函数的表达式;(2)若m=1,①当x2=1时,直接写出y1的取值范围;②当x1<x2<0,p=,q=,试判断p,q的大小关系,并说明理由;(3)若过A、B两点的直线y=x+2与y轴交于点C,连接BO,记△COB的面积为S,当<S<1,求m的取值范围.24.(8分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=52,求AG的长.25.(10分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.26.(10分)某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:(1)根据图示填写下表班级中位数(分)众数(分)平均数(分)一班85二班10085(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由甲乙的做法,根据菱形的判定方法可知正误.【详解】解:甲的作法如图所示,∵四边形ABCD是平行四边形∴AD∥BC∴AE∥CF,∠EAO=∠FCO又∵EF垂直平分AC∴AO=CO,AE=CE又∵∠AOE=∠COF∴ΔAOE≅ΔCOF(ASA)∴AE=CF∴四边形AFCE为平行四边形又∵AE=CE∴四边形AFCE为菱形所以甲的作法正确.乙的作法如图所示∵AD∥BC∴∠FAE=∠BEA∵AE平分∠BAD∴∠FAE=∠BAE∴∠BEA=∠BAE∴BA=BE同理可得AB=AF∴AF=BE又∵AF∥BE∴四边形ABEF为平行四边形∵AB=AF∴四边形ABEF为菱形所以乙的作法正确故选:C【点睛】本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.2、A【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.【详解】解:如图,过点P作PD⊥OB于D,
∵点P是∠AOB的角平分线上一点,PC⊥OA,∴PC=PD=1,即点P到OB的距离等于1.故选:A.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.3、C【解析】
首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S=,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.【详解】解:根据反比例函数得对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,又∴S四边形ABCD=2.故答案选:C.【点睛】本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.4、B【解析】试题分析:当腰为5cm时,5+5=10,不能构成三角形,因此这种情况不成立.
当腰为10cm时,10-5<10<10+5,能构成三角形;
此时等腰三角形的周长为10+10+5=25cm.
故选B.5、A【解析】
不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是不可能事件,故选项正确;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是随机事件,故选项错误.故选:A.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、D【解析】
由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.【详解】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.【点睛】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.7、C【解析】试题解析:∵三角板绕原点O顺时针旋转75°,
∴旋转后OA与y轴夹角为45°,
∵OA=2,
∴OA′=2,
∴点A′的横坐标为2×=,
纵坐标为-2×=-,
所以,点A′的坐标为(,-)故选C.8、B。【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,在Rt△AOB中,,∵BD×AC=AB×DH,∴DH=cm。在Rt△DHB中,,AH=AB﹣BH=cm。∵,∴GH=AH=cm。故选B。考点:菱形的性质,勾股定理,锐角三角函数定义。9、A【解析】
设长途客车原来的平均速度为xkm/h,根据从重庆地到昆明的时间缩短了3小时,得出方程即可.【详解】解:设长途客车原来的平均速度为xkm/h,则原来从重庆地到昆明的时间为700x平均速度提高了25km/h后所花时间为700x+25,根据题意提速后所花时间缩短3∴700x故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.10、D【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是的中位线.,同理:,,.又等腰梯形ABCD中,..四边形EFGH是菱形.是的中位线,∴EFEG,,同理,NMEG,∴EFNM,四边形OPMN是平行四边形.,,又菱形EFGH中,,平行四边形OPMN是矩形.故选:D.【点睛】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.二、填空题(每小题3分,共24分)11、50°【解析】
由旋转可得∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,则∠CAE=∠CEA,再由三角形的外角性质可得∠CDE=∠CAE+∠AED可求出∠CAE的度数.【详解】∵△ABC绕点C顺时针旋转得到△EDC∴∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,∴∠CAE=∠CEA,则∠AED=∠CEA-30°又∵∠CDE=∠CAE+∠AED即∠CAE+∠CAE-30°=70°解得∠CAE=50°故答案为:50°.【点睛】本题考查三角形中的角度计算,解题的关键是利用旋转的性质得到旋转后的角度,并利用三角形的外角性质建立等量关系.12、1【解析】
由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.【详解】解:∵AB∥IL,IJ∥BC,∴四边形EIHB是平行四边形,∴S△EHB=S△EIH,同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.13、3.1【解析】
根据折叠的特点得到,,可设,在Rt△AGE中,利用得到方程即可求出x.【详解】解∵折叠,∴,.设,∴.在中,,∴,解得.故答案为:3.1.【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.14、【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.【详解】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴,∴NE=x,∴BE=BN+EN=x,CE=CN−EN=x,由勾股定理得:AE2=AB2−BE2=AC2−CE2,即52−(x)2=(2x)2−(x)2,解得:x=,∴AC=2x=;故答案为.【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.15、.【解析】
约去分子与分母的公因式即可.【详解】.故答案为:.【点睛】本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.16、4.【解析】正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.∴∠AOM+∠BOF=90°.又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.在△AOM和△BOF中,∵∠AMO=∠OFB=90°,∠OAM=∠BOF,OA=OB,∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.∴OF=CF.∴△OCF为等腰直角三角形.∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.17、【解析】
根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.【详解】∵DE∥BC,
∴△ADE∽△ABC,∴,
∴,
故答案为:.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.18、13×(23)【解析】
已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13【点睛】本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.三、解答题(共66分)19、(1);(2);(3)P(,0).【解析】
(1)把A的坐标代入即可求出结果;(2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.【详解】(1)把A(1,4)代入得:m=4,∴反比例函数的解析式为:;(2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,∴,∴一次函数的解析式为:;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),∴直线AB′的解析式为:,当y=0时,x=,∴P(,0).20、(1);(2)2-1【解析】
(1)首先计算二次根式的乘法,再计算二次根式的除法即可;(2)首先计算零次幂、二次根式的化简、负整数指数幂,然后再计算加减即可.【详解】解:(1)原式===×=×=;(2)原式=1+2-4=2-1.【点睛】此题主要考查了二次根式的混合运算和零次幂、负整数指数幂,关键是熟练掌握各计算公式和计算法则.21、(1)1001,9999;(2)见详解;(3)2754和1【解析】
(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则=1100(a+b)+11(c+d)=1111(a+b);即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和1.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.22、AB=1,BC=5【解析】
根据平行四边形对边相等可得BC+AB=8,根据△AOB的周长比△BOC的周长小2可得BC-AB=2,再解即可.【详解】解:∵▱ABCD的对角线AC、BD相交于点O,其周长为16,∴OA=OC,OB=OD,AB=CD,AD=CB,∴BC+AB=8①;∵△AOB的周长比△BOC的周长小2,∴OB+OC+BC-(OA+OB+AB)=2,∴BC-AB=2②,①+②得:2BC=10,∴BC=5,∴AB=1.【点睛】此题主要考查了平行四边形的性质,解决此题的关键是掌握平行四边形两组对边分别相等,对角线互相平分.23、(1)y=;(2)①当0<x1<1时,y1>1,当x1<0时,y1<0;②p<q,见解析;(3)<m<3或-1<m<-【解析】
(1)将点A,B的坐标代入反比例函数解析式中,联立方程组即可得出结论;(2)先得出反比例函数解析式,①先得出x1=,再分两种情况讨论即可得出结论;②先表示出y1=,y2=,进而得出p=,最后用作差法,即可得出结论;(3)先用m表示出x2=-1+,再求出点C坐标,进而用x2表示出S,再分两种情况用<S<1确定出x2的范围,即可得出-1+的范围,即可得出m的范围.【详解】解:(1)∵A(4,n)和B(n+,3)在反比例函数y=的图象上,∴4n=3(n+)=m,∴n=1,m=4,∴反比例函数的表达式为y=;(2)∵m=1,∴反比例函数的表达式为y=,①如图1,∵B(x2,y2)在反比例函数y=的图象上,∴y2=1,∴B(1,1),∵A(x1,y1)在反比例函数y=的图象上,∴y1=,∴x1=,∵x1<x2,x2=1,∴x1<1,当0<x1<1时,y1>1,当x1<0时,y1<0;②p<q,理由:∵反比例函数y=的图象经过点A(x1,y1)和B(x2,y2),∴y1=,y2=,∴p===,∵q=,∴p-q=-==,∵x1<x2<0,∴(x1+x2)2>0,x1x2>0,x1+x2<0,∴<0,∴p-q<0,∴p<q;(3)∵点B(x2,y2)在直线AB:y=x+2上,也在在反比例函数y=的图象上,∴,解得,x=-1,∵x1<x2,∴x2=-1+∵直线AB:y=x+2与y轴相交于点C,∴C(0,2),当m>0时,如图2,∵A(x1,y1)和B(x2,y2)(x1<x2),∴点B的横坐标大于0,即:x2>0∴S=OC•x2=×2×x2=x2,∵<S<1,∴<x2<1,∴<-1+<1,∴<m<3;当m<0时,如图3,∵A(x1,y1)和B(x2,y2)(x1<x2),∴点B的横坐标小于0,即:x2<0∴S=OC•|x2|=-×2×x2=-x2,∵<S<1,∴<-x2<1,∴-1<x2<-,∴-1<-1+<-,∴-1<m<-,即:当<S<1时,m的取值范围为<m<3或-1<m<-.【点睛】此题是反比例函数综合题,主要考查了待定系数法,作差法比较代数式大小的方法,不等式组的解法,用分类讨论的思想解决问题是解本题的关键.24、(1)见解析;(2)64;(3)24【解析】
(1)证明ΔADF≅ΔCDE,根据全等三角形的性质得到∠ADF=∠CDE,根据垂直的定义证明;(2)根据三角形的外角的性质、等腰三角形的判定定理得到GE=GF,根据三角形的周长公式求出BA,根据正方形的面积公式计算;(3)作HP⊥HC交CB的延长线于点P,证明ΔHDC≅ΔHEP,得到DC=PE=8,CH=HP=52,根据勾股定理列方程求出EG【详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠DAF=∠DCE=90°,在ΔADF和ΔCDE中,AD=CD∠DAF=∠DCE∴ΔADF≅ΔCDE(SAS)∴∠ADF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADF+∠ADE=90°,即∠FDE=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GEF=∠GFE,∴GE=GF,∵ΔBGE的周长为16∴BE+GB+GE=16∴BE+GB+GF=16∴BE+BA+AF=16∵CE=AF,∴BA+CB=16,∴BC=BA=8,∴===A=64;(3)过点H作HP⊥HC交CB的延长线于点P,∵GF=GE,DF=DE,∴DG垂直平分EF,∵∠FDE=90°,∴DH=EH,∠DHE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业资产评估人员劳务协议
- 2024年水电工程建筑协议范本
- 2024年专业设备买卖代理协议
- 2024商业反担保协议格式
- 2024年度桩基破桩头工程承包协议
- 2024二人协作协议格式样本指导手册
- 2024年项目经理职务协议样本
- 2024年期铁棚建设协议范本
- 2024年定制SaaS软件销售协议
- 2024矿产品交易协议条款集要
- 第7课《回忆我的母亲》课件-2024-2025学年统编版语文八年级上册
- 《阿凡达》电影赏析
- DB42-T 2286-2024 地铁冷却塔卫生管理规范
- 合作伙伴合同协议书范文5份
- 小学生主题班会《追梦奥运+做大家少年》(课件)
- 公安机关人民警察高级执法资格考题及解析
- 浙教版信息科技四年级上册全册教学设计
- 2024年全国职业院校技能大赛中职(中式烹饪赛项)考试题库-下(多选、判断题)
- 教师节感恩老师主题班会一朝沐杏雨一生念师恩因为有你未来更加光明课件
- 红托竹荪工厂化栽培技术规程
- 【基于Android的电商购物系统设计与实现3900字(论文)】
评论
0/150
提交评论