版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学数学新课标和教学大纲的比较
随着新一轮的数学课程改革,《一般中学数学课程标准(试验)》诞生了。那么新课程标准与旧教学大纲之间会有什么样的异同点?如何彻底理解透彻新课标的内涵?等等问题都值得我们探讨探讨,在此从以下几个方面将二者进行比较,希望能对新课程的实施有所帮助。1、课程目标与数学目的的比较课程目标分为总目标和具体目标两部分,比以往数学目的内容更丰富,更具体。下面笔者从总目标、基础学问、实力、数学观4方面对数学目的和课程目标进行比较,从而说明课程目标的发展进步。1.1关于总目标课程标准中的总目标指出“使学生在九年义务教学数学课程的基础上,进一步提高作为将来公民所必要的数学素养,满意个人发展与社会进步的须要”,其实这是数学教化的首要和基本的目的。对于数学教化只有明确了最基本的教学目标,我们才能有的放矢,才能制定出支持它的具体目标。相比之下,以往数学目的没有这种总分式的结构,笔者认为这是课程目标的一个特色。而且笔者认为总目标中的“满意个人发展”体现了数学教化更注意学生的“特性发展”,响应了“大众”教化的口号,这应当是课程目标的进步之处。1.2关于基础学问数学教化要传授数学基础学问,这是有史以来的一个共同目的,也是一个最根本的目的之一。从表中可以看出,1996年和2000年的教学目的指出基础学问是:中学数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。作为数学学问精髓的思想方法,具有很强的生命力,这两年教学目的将其列入基础学问的范畴,是个好现象。可是近年数学教化偏重于形式化,教学目的没有强调要揭示数学概念、法则、结论的发展过程和本质,如此“会将生动活泼的数学思想活动沉没在形式化的海洋里”。课程目标没有规定哪些是“基础学问”,但我们通过研读可以发觉他们蕴涵于“基本的数学概念,数学结论的本质”,“概念、结论等产生的背景、应用”,“数学思维和方法,以及它们在后继学习中的作用”之中,可见课程标准重视基础学问的好用性及数学思想和方法,强调其本质、来源和实际背景与大纲相比,这是一大进步。仅仅知道数学基础学问的内容是不够的,必需进一步恰当地把握各项学问的深度和广度。1996年和2000的教学大纲在第三部分“教学内容和教学目标”中,用“了解”、“理解”、“驾驭”等用语来描述基础学问须要驾驭的不同层次。而课程标准除了在“内容和要求”中运用上述用语,一起先在课程目标中就提出:“理解”基本的数学概念、数学结论的本质;“了解”概念、结论产生的背景,应用;“体会”其中的数学思想和方法等。如此,在课程目标的宏观指导下,“内容标准”才能对各项基础学问作定性的规定,为老师的教和学生的学指明方向。这是教学目的与课程目标的区分之处,笔者认为这是课程标准的一个优点。数学科学是不断发展前进的,数学基础学问的范围还将会有新的改变。课程目标不仅汲取教学目的的优点——将数学思想和方法作为基础学问,而且更关注基础学问的本质和来源,同时也指出各项基础学问须要驾驭的程度。1.3关于实力培育和发展学生的基本实力是现代数学教学的目的之一,1963年教学大纲首次提出三大实力,实力的出现是一个进步,反应了社会对人才素养提出的要求,体现了教化要培育适应社会须要的人。可是,自60年头提出三大数学实力,尤其是80年头以来,我国的数学教化把实力的培育放到了首要位置。一些学校受升学应试教化的影响,出现了减弱基础学问教化的趋势,为培育三大实力搞题海战术。随着时代的发展,数学教学对实力培育提出了更高的要求。从表中可以看到,1996年和2000年教学目的中将“逻辑思维实力”中的“逻辑”去掉了,也就是说,思维实力不再只注意逻辑思维了。但目的照旧将三大实力放在重要地位。相比之下,课程目标没有沿用旧大纲的三大实力的提法,而是提及了多种实力,如“空间想象、抽象概括、推理论证、运算求解、数据处理等基本实力”,它们蕴涵着三大实力,同时内容又有所丰富。其中“数据处理实力”的提出是跟上时代步伐的,因为在信息和技术为基础的社会里,数据、符号日益成为一种重要信息,为了更好地相识客观世界,人们必需学会处理各种信息,尤其是数字信息。对于实力,目的中还提出“分析和解决实际问题的实力”,这种提法无疑是进步的,对于这种实力的实质是什么,1996年和2000年的教学目的都作了具体说明(详见表格)。从表中“实力”这一栏我们发觉,教学目的和课程目标都很重视培育学生的“问题发觉、问题提出、问题解决、数学沟通”实力。目的中的“形成用数学的意识”和目标中的“发展数学应用意识”都体现了数学教化更加注意培育学生的应用数学的实力,但前者只是处于“形成”阶段,而后者是要“发展”这种实力。此外,2000年的教学目的和课程目标都提出培育学生的创新意识,事实上是给学生提出了一个崭新的实力要求——创新实力,这贯彻了21世纪创新教化的思想,真正做到了与时俱进。上述这些实力都是各国数学教化目的的共同趋势,反应我国课程改革抓住时代的脉搏。进一步我们发觉课程目标提出“逐步地发展独立获得学问的实力”,笔者认为,这体现出要逐步培育学生的自学实力。自学实力对人的发展是非常重要的,因为学生在学校不行能学到他们今后一生所需的学问,而且学问是不断更新的,因此自学实力具有终身价值,在学生时期逐步发展自学实力是必要的。这是教学大纲没有提到过的实力要求。综上比较,笔者认为,1996年和2000年的教学目的在实力目标的设定上对课程目标是有启示的。课程目标在吸取教学目的的精华——培育创新意识和应用意识之外,又提出培育学生独立获得数学学问的实力。1.4关于数学观从表中看出,1996年和2000年教学目的都提出了培育辨证唯物主义观目的要求,有助于在教学中把辨证唯物主义思想方法提示出来,使学生相识到数学中蕴涵着极为丰富的辨证唯物主义因素。这些观点是通过丰富的数学材料的教学,潜移默化、渗透而形成的,数学观也相伴而生。数学观是世界观的一部分,课程目标提出要使学生“具有肯定的数学视野,逐步相识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辨证唯物主义世界观”。由此可以看出,课程目标对培育学生的数学观所提出的要求是跟上时代的步伐的。因为,科学技术与数学的结合对社会各领域的影响越来越大,数学教学必需使学生了解数学之价值,明确数学之精神,体会数学之美。王林全教授在文[4]中指出,为了培育正确的数学观,我们认为,数学课程和教学的改革,对中美两国都有重要意义。在课程目标的宏观指导下,课程标准设定了大量选修课程(包括数学史、数学家的事迹贡献),有利于扩展学生的数学视野,培育崇尚数学的理性精神,帮助他们了解数学在人类文明发展中的作用,逐步形成正确的数学观。通过比较,我们可以这样认为,课程目标对培育数学观提出的要求比教学目的更有指导意义,有利于教学内容的制定。《新课标》把数学文化作为与必修和选修课并列的一项课程内容,并要求非形式化地贯穿于整个中学课程中。这使数学文化在课程中应有地位的确立。这一举措表明《新课标》对数学的德育功能的高度重视,体现了其显明的时代特色,表明它擅长吸纳数学教化的最新理念,是一个开放的系统。这将使新的中学数学课程具有更全面的育人功能,在促进学生学问和实力发展的同时,情感、意志、价值观也得到健康的发展。2
课程内容与要求的改变2.1新增教学内容课程教学内容课时数数学3(必修)算法初步(含程序框图)12选修1—2推理与证明10选修1—2框图(流程图、结构图)6选修2—2推理与证明8选修3—1数学史选讲18选修3—2信息平安与密码18选修3—3球面上的几何18选修3—4对称与群18选修3—5欧拉公式与闭曲面分类18选修3—6三等分角与数域扩充18选修4—2距阵与变换18选修4—3数列与差分18选修4—6初等数论初步18选修4—7优选法与试验设计初步18选修4—8统筹法与图论初步18选修4—9风险与决策18选修4—10开关电路与布尔代数18另外,新增数学建模、数学文化是贯穿于整个中学课程的主要内容,这些内容不单独设置,渗透在每个模块或专题中。要求中学阶段至少各应支配一次较为完整的数学建模、数学探究活动。2.2删减的教学内容(原大纲的)课程教学内容课时数选修Ⅱ极限12
注:(1)原大纲的“极限”内容被删减,但该内容中的“数学归纳法与数学归纳法举例”在《新课标》中被支配在选修2—2“推理与证明”、选修4—5“不等式选讲”中。(2)以上可以看出,《新课标》新增很多教学内容,但这些内容绝大多数都是选修内容。同时,由于《新课标》对立体几何与平面解析几何的一些传统内容进行整合,对已进入中学课程的微积分等内容进行了重新的设计,这就使中学新课程内容不致面临课时的惊慌,从而整个课程能在新课程支配的框架下顺当实施。2.3部分教学内容必修与选修的调整教学内容在原大纲中的状况教学内容在新标准中的状况统计:选修(选修Ⅰ、选修Ⅱ)统计:必修(数学3)统计案例:选修(选修1—2、选修2—3)简易逻辑:必修常用逻辑用语:选修(选修1—1、选修2—1)教学内容在原大纲中的状况教学内容在新标准中的状况圆锥曲线方程:必修圆锥曲线与方程:选修(选修1—1、选修2—1)排列、组合、二项式定理:必修计数原理:选修2—3)2.4部分教学内容学问点的调整课程教学内容增加学问点删减学问点数学1函数概念与基本初等函数Ⅰ幂函数
数学2立体几何初步
三垂线定理及其逆定理数学2平面解析几何初步空间直角坐标系
数学3概率几何模型
数学3统计茎叶图
数学4基本初等函数Ⅱ(三角函数)
已知三角函数值求角数学4平面上的向量
线段定比分点、平移公式数学5不等式
分式不等式数学1—1数学2—1常用逻辑用语全称量词与存在量词
数学2—2导数及其应用定积分与微积分基本定理
数学4—4坐标系与参数方程柱坐标系、球坐标系
2.5在部分原有教学内容中某些学问点所在位置的调整学问点原大纲中所在教学内容新课标中所在教学内容函数的奇偶性(必修)三角函数(数学1)函数概念与基本初等函数Ⅰ两点间的距离公式(必修)平面对量(数学2)平面解析几何初步简洁线性规划问题(必修)直线和圆的方程(数学5)不等式反证法(必修)9(A)直线、平面、简洁几何体(选修1—2)推理与证明(选修2—2)推理与证明数学归纳法(必修)探讨性学习参考课题(选修Ⅱ)极限(选修2—2)推理与证明(选修4—5)不等式选讲2.6在部分原有教学内容中某些学问点教学要求的调整课程教学内容提高要求降低要求教学1函数概念与基本初等函数Ⅰ分段函数要求能简洁应用反函数的处理,只要求以具体函数为例进行说明和直观理解,不要求一般地探讨形式化的反函数定义,也不要求求已知函数的反函数数学2立体几何初步
仅要求相识在柱、锥、台球及其简洁组合体的结构特征;对棱柱,正棱锥、球的性质由驾驭降为不作要求。数学3统计知道最小二乘法的思想
选修1—1选修2—1常用逻辑用语
不要求运用真值表选修1—1圆锥曲线与方程
对抛物线、双曲线的定义和标准方程的要求由驾驭降为了解选修2—1圆锥曲线与方程
对双曲线的定义、几何图形和标准方程的要求由驾驭降为了解,对其关性质由驾驭降为知道选修1—1选修2—2导数及其应用要求通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用
选修2—3计数原理
对组合数的两特性质不作要求选修4—4坐标系与参数方程对原大纲末作要求的直线、双曲线、抛物线提出了同样的写出参数方程的要求原大纲理解圆与椭圆的参数方程降为选择适当的参数写出它们的参数方程3、同一教学内容课时的改变原大纲新课标教学内容与性质课时教学内容与性质课时必修、选修课时增减(+、—)集合、简易逻辑(必修)14集合(必修)常用逻辑用语(选修1—1、2—1)48(必修)—10(选修)+8函数(必修)30函数概念与基本初等函数Ⅰ(必修)32(必修)+2三角函数(必修)46基本初等函数Ⅱ(三角函数)(必修)三角恒等变换(必修)解三角形(必修)16
8
(必修)—14直线和圆的方程(必修)22平面解析几何初步(必修)18(必修)—4圆锥曲线方程(必修)18圆锥曲线与方程(选修1—1)圆锥曲线与方程(选修2—1)12
16(必修)—18(选修)+12(选修)+16直线、平面、简洁几何体9(A)(必修)直线、平面、简洁几何体9(B)(必修)36
36立体几何初步(必修)空间向量与立体几何(选修2—1)18
12(必修)—18(选修)+12不等式(必修)22不等式(必修)不等式选讲(选修4—5)1618(必修)—6(选修)+18排列、组合、二项式定理(必修)18计数原理(选修2—3)14(必修)—18(选修)+14统计(选修Ⅰ)9统计(必修)统计案例(选修1—2)1614(必修)+16(选修)+5概率(必修)12概率(必修)8(必修)—4统计与概率(选修Ⅱ)14统计与概率(选修2—3)22(选修)+8探讨性学习课题(必修)探讨性学习课题(选修Ⅰ)探讨性学习课题(选修Ⅱ)12
3
6数学探究(是与必修课程和选修课程并列的课程内容,参见书目)
内容不单独设置,渗透在每个模块
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论