第22讲二次函数背景下的相似三角形的存在性(解析版)_第1页
第22讲二次函数背景下的相似三角形的存在性(解析版)_第2页
第22讲二次函数背景下的相似三角形的存在性(解析版)_第3页
第22讲二次函数背景下的相似三角形的存在性(解析版)_第4页
第22讲二次函数背景下的相似三角形的存在性(解析版)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第22讲二次函数背景下的相似三角形的存在性【技巧点拨】二次函数背景下的相似三角形考点分析:1.先求函数的解析式,然后在函数的图像上探求符合几何条件的点;2.简单一点的题目,就是用待定系数法直接求函数的解析式;3.复杂一点的题目,先根据图形给定的数量关系,运用数形结合的思想,求得点的坐标,继而用待定系数法求函数解析式;4.还有一种常见题型,解析式中由待定字母,这个字母可以根据题意列出方程组求解;5.当相似时:一般说来,这类题目都由图像上的点转化到三角形中的边长的问题,再由边的数量关系转化到三角形的相似问题;6.考查利用几何定理和性质或者代数方法建立方程求解的方法。【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“教法指导”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比式引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。【中考挑战满分模拟练】1.(2023黄浦区一模)已知抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx﹣8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的余弦值;(3)直线y=kx+4与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.【分析】(1)根据抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,列出a和b的二元一次方程组,求出a和b的值即可;(2)设对称轴直线x=1与x轴交于点D,过A作AH⊥BP,垂足为H,先求出AB、PD、AP和BP的长,进而求出AH的长,即可求出cos∠APB的值;(3)△MNC与△AOC相似时,分①∠MNC=∠AOC=90°和②∠NMC=∠AOC=90°,利用相似三角形的性质以及全等三角形的知识求出点M的坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴顶点P坐标为(1,﹣9);(2)设对称轴直线x=1与x轴交于点D,过A作AH⊥BP,垂足为H,如图1,∵A(﹣2,0),B(4,0),P(1,﹣9),∴AB=6,PD=9,AP=BP=3,∵AB×PD=PB×AH,∴AH=,在Rt△APH中,PH==,cos∠APB==;(3)∵∠ACO=∠MCN,∴△MNC与△AOC相似时,①∠MNC=∠AOC=90°,如图2:∴,∵点C在抛物线上,∴当x=0时,y=8,∴点C的坐标为(0,﹣8),∵直线y=kx+4与y轴交于点N,∴当x=0时,y=4,∴N点坐标为(0,4),∴AO=2,OC=8,NC=12,∴MN=3,直线AC的解析式是:y=﹣4x﹣8,设M点坐标为(a,4),代入上述解析式中得:a=﹣3,∴M(﹣3,4),②当∠NMC=∠AOC=90°时,如图3:设MN与x轴交于点E,∴=,∵AC===2,∴=,∴CM=,设M坐标为(n,﹣4n﹣8),∵CM==,∴或n=﹣,∵M在第二象限,∴M(﹣,),综上M点的坐标为(﹣3,4)或(﹣,).【点评】本题主要考查了二次函数的综合应用,掌握待定系数法求二次函数的解析式、二次函数的性质、相似三角形的判定与性质、全等三角形的判定与性质以及锐角三角形函数值的定义是解答本题的关键.2.(2023浦东新区一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴的正、负半轴分别交于点B、A,与y轴交于点C,已知AB=5,tan∠CAB=3,OC:OB=3:4.(1)求该抛物线的表达式;(2)设该抛物线的对称轴分别与x轴、BC交于点E、F,求EF的长;(3)在(2)的条件下,联结CE,如果点P在该抛物线的对称轴上,当△CEP和△CEB相似时,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)求出直线BC的表达式为:y=﹣x+3,即可求解;(3)由△CEP和△CEB相似和∠CEF=∠ECF知:存在∠P=∠ABC=β或∠PCE=∠ABC=β两种情况,再用解直角三角形的方法即可求解.【解答】解:(1)由抛物线的表达式知,点C(0,3),即OC=3,∵OC:OB=3:4,则OB=4,即点B(4,0),∵tan∠CAB=3,OC=3,则OA=1,即点A(﹣1,0),设抛物线的表达式为:y=a(x﹣x1)(x﹣x2),则y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=3,则a=﹣,则抛物线的表达式为:y=﹣x2+x+3;(2)设直线BC的表达式为:y=kx+3,将点B的坐标代入上式得:0=4k+3,解得:k=﹣,则直线BC的表达式为:y=﹣x+3,由抛物线的表达式知,其对称轴为x=,当x=时,y=﹣x+3=,即EF=;(3)由(2)知,点F(,),则CF===EF,则∠CEF=∠ECF=∠OCE=α,则tan∠CEF===tanα,而tan∠OBC==tanβ,由C、E的坐标得,CE=,∵△CEP和△CEB相似,∠CEF=∠ECF,故存在∠P=∠ABC=β或∠PCE=∠ABC=β两种情况,当∠P=∠ABC=β时,过点C作CH⊥PE于点H,在Rt△CHP中,设CH=3m=OE=,则PH=4m=2,即点P(,5);当∠PCE=∠ABC=β时,过点P作PH⊥CE于点H,在Rt△PHE中,tan,设PH=3m,则EH=6m,则Rt△PHC中,tanβ=,则CH=4m,则CE=CH+EH=10m=,则PE==3m=,则点P(,),综上,点E的坐标为P(,5)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,线段旋转的性质,三角形全等的判定及性质,平行四边形的性质是解题的关键.3.(2023浦东新区一模)如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是(3,0),tan∠OAC=3;(1)求该抛物线的函数表达式;(2)点P在x轴上方的抛物线上,且∠PAB=∠CAB,求点P的坐标;(3)点D是y轴上一动点,若以D、C、B为顶点的三角形与△ABC相似,求出符合条件的点D的坐标.【分析】(1)根据正切函数,可得A点坐标,根据待定系数法,可得函数解析式;(2)根据正切函数,可得P点坐标,根据图象上的点满足函数解析式,可得关于x的方程,根据解方程,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得关于y的方程,根据解方程,可得答案.【解答】解(1)∵抛物线y=ax2+bx﹣3与y轴交于点C,∴点C的坐标为(0,﹣3),∴OC=3,∵tan∠OAC=3,∴OA=1,即点A的坐标为(﹣1,0),又点B(3,0),∴,解得,∴抛物线的函数表达式是y=x2﹣2x﹣3;(2)∵∠PAB=∠CAB,∴tan∠PAB=tan∠CAB=3,∵点P在x轴上方,设点P的横坐标为x,则点P的纵坐标为3(x+1),∴3(x+1)=x2﹣2x﹣3,得x=﹣1(舍去)或x=6,当x=6时,y=21,∴点P的坐标为(6,21);(3)如图,设点D的坐标为(0,y),易得△ABC为∠ABC=45°的锐角三角形,所以△DCB也是锐角三角形,∴点D在点C的上方,∴∠DCB=45°,∴∠ABC=∠DCB,∵AB=4,BC=,DC=y+3,①如果=,则=,∴y=1,即点D(0,1),②如果=则=,∴y=,即点D1(0,).【点评】本题考查了二次函数综合题,利用待定系数求函数解析式;利用正切函数得出P点坐标是解题关键,又利用图象上的点满足函数解析式得出P点坐标;利用两组对边对应成比例且夹角相等的两个三角形相似得出关于y的方程是解题关键,要分类讨论,以防遗漏.4.(2023徐汇区一模)如图,二次函数y=+bx+c的图象交坐标轴于点A(4,0),B(0,﹣2),点P为x轴上一动点.(1)求二次函数y=+bx+c的表达式;(2)将线段PB绕点P逆时针旋转90°得到线段PD,若D恰好在抛物线上,求点D的坐标;(3)过点P作PQ⊥x轴分别交直线AB,抛物线于点Q,C,连接AC.若以点B、Q、C为顶点的三角形与△APQ相似,直接写出点P的坐标.【分析】(1)将A(4,0),B(0,﹣2),代入y=+bx+c,即可求解;(2)设P(t,0),过点D作x轴垂线交于点N,可证明△PND≌△BOP(AAS),则D(t+2,﹣t),将D点代入抛物线解析式得﹣t=(t+2+3)(t+2﹣4),求得D(3,﹣1)或D(﹣8,10);(3)根据∠ADC=90°,∠ACD=∠BCP,可知相似存在两种情况:①当∠CBP=90°时,待定系数法求得直线BC的解析式,解方程组得到P点的坐标;②当∠CPB=90°时,如图2,则B和P是对称点,可得P的纵坐标为﹣2,代入抛物线的解析式可得结论;【解答】解:(1)将A(4,0),B(0,﹣2),代入y=+bx+c得,解得,∴二次函数y=+bx+c的表达式y=x2﹣x﹣2;(2)当x=0时,y=x2﹣x﹣2=﹣2,∴OB=2,设P(t,0),如图2,过点D作x轴垂线交于点N,∵∠BPD=90°,∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,∴∠NPD=∠OBP,在△PND和△BOP中,,∴△PND≌△BOP(AAS),∴OP=ND,BO=PN,∴D(t+2,﹣t),∴﹣t=(t+2+3)(t+2﹣4),解得t=1或t=﹣10,∴D(3,﹣1)或D(﹣8,10);(3)设直线AB的解析式为y=kx+b,∴,解得,∴设直线AB的解析式为y=x﹣2,∵PC∥y轴,∴∠APQ=90°,∵∠AQP=∠BQC,∴以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,存在两种情况:①当∠CBQ=90°时,设P(x,0),则C(x,x2﹣x﹣2),Q(x,x﹣2),∵∠APQ=∠CBQ=90°,∠AQP=∠CQB,∴△APQ∽△CBQ,∵BC⊥AB,∴设直线BC的解析式为y=ax+c,∴a=﹣2,c=﹣2,∴直线BC的解析式为y=﹣2x﹣2,解得,或(不合题意舍去),∴P(﹣11,0);(②当∠BCQ=90°时,则B和C是关于对称轴的对称点,当y=﹣2时,x2﹣x﹣2=﹣2,∴x1=0(舍),x2=1,∴P(1,0);综上,点P的坐标是(﹣11,0)或(1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,熟练掌握二次函数的图象及性质,分类讨论,数形结合是解题的关键.5.(2022•崇明区二模)如图.在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣1,0),对称轴为直线x=1.点M为线段OB上的一个动点,过点M作直线l平行于y轴交直线BC于点F,交抛物线y=ax2+2x+c(a≠0)于点E.(1)求抛物线的解析式;(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;(3)如果将△ECF沿直线CE翻折,点F恰好落在y轴上点N处,求点N的坐标.【分析】(1)根据点A的坐标和对称轴可得关于a、c的方程组,解方程组可得答案;(2)首先利用点B、C的坐标可得直线BC的解析式为:y=﹣x+3,则∠MBF=∠FBM=∠CFE=45°,设F(m,﹣m+3),则E(m,﹣m2+2m+3),表示出EF和CF的长度,再根据相似三角形的判定与性质,从而解决问题;(3)根据平行线的性质和翻折的性质可得CF=EF,从而得出m的方程,即可解决问题.【解答】解:(1)由题意得:,解得:,所以,所求的抛物线的解析式是:y=﹣x2+2x+3;(2)由题意得:B(3,0),C(0,3),∴直线BC的解析式为:y=﹣x+3,∴∠MBF=∠FBM=∠CFE=45°,设F(m,﹣m+3),则E(m,﹣m2+2m+3),∴,当以C、E、F为顶点的三角形与△ABC相似时,①若,则,∴或m=0(舍去),∴,②若,则,∴或m=0(舍去),∴,∴EF=或;(3)∵△CEN是由△CEF沿直线CE翻折而得,∴CN=CF,∠NCE=∠ECF,∵NC∥EF,∴∠NCE=∠CEF,∴∠ECF=∠CEF,∴CF=EF,∵,解得:(舍去),∴,所以,N的的坐标是.【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线的性质,翻折的性质,一元二次方程等知识,熟练掌握平行线与角平分线得出等腰三角形是解决问题(3)的关键.6.(2022•宝山区二模)已知抛物线y=ax2+bx﹣2(a≠0)经过点A(1,0)、B(2,0),与y轴交于点C.(1)求抛物线的表达式;(2)将抛物线向左平移m个单位(m>2),平移后点A、B、C的对应点分别记作A1、B1、C1,过点C1作C1D⊥x轴,垂足为点D,点E在y轴负半轴上,使得以O、E、B1为顶点的三角形与△A1C1D相似,①求点E的坐标;(用含m的代数式表示)②如果平移后的抛物线上存在点F,使得四边形A1FEB1为平行四边形,求m的值.【分析】(1)将点A(1,0)、B(2,0)代入y=ax2+bx﹣2,即可求解;(2)①分别求出A1(1﹣m,0),B1、(2﹣m,0),C1(﹣m,﹣2),D(﹣m,0),设E(0,y),由题意可知要使三角形相似,只需∠OB1E=∠DC1A1或∠OB1E=∠C1A1D,当∠OB1E=∠DC1A1,tan∠OB1E=tan∠DC1A1=,=则,求出E(0,1﹣m);当∠OB1E=∠C1A1D,则=2,求出E(0,4﹣2m);②设F(x,y),当E(0,1﹣m)时,由题意可知四边形A1E为平行四边形的对角线,可得,再由y=﹣(x﹣+m)2+,求出m=2(舍)或m=;同理当E(0,4﹣2m)时,求得m=5.【解答】解:(1)将点A(1,0)、B(2,0)代入y=ax2+bx﹣2,∴,解得,∴y=﹣x2+3x﹣2;(2)①y=﹣x2+3x﹣2=﹣(x﹣)2+,平移先后抛物线解析式为y=﹣(x﹣+m)2+,令x=0,则y=﹣2,∴C(0,﹣2),平移后A1(1﹣m,0),B1、(2﹣m,0),C1(﹣m,﹣2),∵C1D⊥x轴,∴D(﹣m,0),∴OB1=m﹣2,C1D=2,A1D=1,设E(0,y),∴OE=﹣y,∵∠B1OE=90°,∠C1DA1=90°,∴∠OB1E=∠DC1A1或∠OB1E=∠C1A1D,当∠OB1E=∠DC1A1,∴tan∠OB1E==,tan∠DC1A1==,∴=,∴y=1﹣m,∴E(0,1﹣m);当∠OB1E=∠C1A1D,∴=2,∴y=4﹣2m,∴E(0,4﹣2m);综上所述:E点坐标为(0,1﹣m)或(0,4﹣2m);②设F(x,y),当E(0,1﹣m)时,∵四边形A1FEB1为平行四边形,∴四边形A1E为平行四边形的对角线,∴,∴x=﹣1,∵平移先后抛物线解析式为y=﹣(x﹣+m)2+,∴y=(﹣+m)2+,∴1﹣m=﹣(﹣+m)2+,解得m=2(舍)或m=,当m=时,y=﹣,F(﹣1,﹣),∴m=;当E(0,4﹣2m)时,∵四边形A1FEB1为平行四边形,∴四边形A1E为平行四边形的对角线,∴,∴x=﹣1,∵平移先后抛物线解析式为y=﹣(x﹣+m)2+,∴y=(﹣+m)2+,∴4﹣2m=﹣(﹣+m)2+,∴m=5或m=2(舍);综上所述:m=或m=5.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,抛物线平移的性质,平行四边形的性质是解题的关键.7.(2022青浦一模24).(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,顶点为点D.(1)求该抛物线的表达式及点C的坐标;(2)联结BC、BD,求∠CBD的正切值;(3)若点P为x轴上一点,当△BDP与△ABC相似时,求点P的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=x2+bx+c,得,解得:,所以抛物线的表达式为y=x2﹣2x﹣3.当x=0时,y=﹣3.∴点C的坐标为(0,﹣3).(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点D的坐标为(1,﹣4).∵B(3,0)、C(0,﹣3)、D(1,﹣4),∴BC=,DC=,BD=.∴BC2+DC2=18+2=20=DB2.∴∠BCD=90°.∴tan∠CBD=.(3)∵tan∠ACO=,∴∠ACO=∠CBD.∵OC=OB,∴∠OCB=∠OBC=45°.∴∠ACO+∠OCB=∠CBD+∠OBC.即:∠ACB=∠DBO.∴当△BDP与△ABC相似时,点P在点B左侧.(i)当时,∴.∴BP=6.∴P(﹣3,0).(ii)当时,∴.∴BP=.∴P(﹣,0).综上,点P的坐标为(﹣3,0)或(﹣,0).8.(2022嘉定一模24)(12分)(2021秋•嘉定区期末)在平面直角坐标系xOy中,点A、B两点在直线y=x上,如图.二次函数y=ax2+bx﹣2的图象也经过点A、B两点,并与y轴相交于点C,如果BC∥x轴,点A的横坐标是2.(1)求这个二次函数的解析式;(2)设这个二次函数图象的对称轴与BC交于点D,点E在x轴的负半轴上,如果以点E、O、B所组成的三角形与△OBD相似,且相似比不为1,求点E的坐标;(3)设这个二次函数图象的顶点是M,求tan∠AMC的值.【解答】解:(1)∵二次函数y=ax2+bx﹣2的图像与y轴相交于点C,∴点C的坐标为(0,﹣2),∵BC//x轴,∴点B的纵坐标是﹣2,∵点A、B两点在直线y=x上,点A的横坐标是2,∴点A的坐标为(2,1),点B的坐标为(﹣4,﹣2),∵这个二次函数的图像也经过点A(2,1)、B(﹣4,﹣2),∴,解这个方程组,得a=,b=1,∴二次函数的解析式是y=+x﹣2;(2)根据(1)得,二次函数y=+x﹣2图像的对称轴是直线x=﹣2,∴点D的坐标为(﹣2,﹣2),∴OB=2,BD=2,∵BC//x轴,∴∠OBD=∠BOE,∴以点E、O、B组成的三角形与△OBD相似有可能以下两种:①当时,△BOD∽△OBE,显然这两相似三角形的相似比为1,与已知相似比不为1矛盾,这种情况应舍去,②当时,△BOD∽△OEB,∴,∴OE=10,又点E在x轴的负半轴上,∴点E的坐标为(﹣10,0);(3)过点C作CH⊥AM,垂足为H,根据(1)得,二次函数的解析式是y=+x﹣2的顶点坐标为M(﹣2,﹣3),设直线AM的解析式为y=kx+m,,解得k=1,m=﹣1,∴直线AM的解析式为y=x﹣1,设直线AM与x轴、y轴的交点分别为点P、Q,则点P的坐标为(1,0),点Q的坐标为(0,﹣1),∴△OPQ是等腰直角三角形,∠OQP=45°,∵∠OQP=∠HOC,∴∠HOC=45°,∵点C的坐标为(0,﹣2),∴CQ=1,∴HC=HQ=,又MQ=2,∴MH=MQ﹣HQ=,∴tan∠AMC=.9.(202崇明一模)24.如图,抛物线y=−x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求抛物线的解析式,并写出此抛物线的对称轴和顶点坐标;(2)如果以点P、N、B、O为顶点的四边形为平行四边形,求m的值;(3)如果以B、P、N为顶点的三角形与△ABO相似,求点M的坐标.【小问1详解】解:∵抛物线y=−x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),∴,解得:,∴抛物线的解析式为y=−x2+x+3,∵y=−x2+x+3=−(x-)2+,∴此抛物线对称轴为x=,顶点坐标为(,);【小问2详解】解:设直线AB的解析式为y=px+q,把A(4,0),B(0,3)代入得,解得:,∴直线AB的解析式为y=,∵M(m,0),MN⊥x轴,∴N(m,−m2+m+3),P(m,),∴NP=−m2+3m,OB=3,∵NP∥OB,且以点P、N、B、O为顶点的四边形为平行四边形,∴NP=OB,即−m2+3m=3,整理得:m2-4m+4=0,解得:m=2;【小问3详解】∵A(4,0),B(0,3),P(m,),∴AB=5,BP=,而NP=−m2+3m,∵PN∥OB,∴∠BPN=∠ABO,当时,△BPN∽△OBA,即,整理得9m2-11m=0,解得m1=0(舍去),m2=,此时M点的坐标为(,0);当时,△BPN∽△ABO,即,整理得2m2-5m=0,解得m1=0(舍去),m2=3,此时M点的坐标为(3,0);综上所述,点M的坐标为(,0)或(3,0).10.(2022宝山一模)已知在平面直角坐标系中,拋物线经过点、,顶点为点.(1)求抛物线的表达式及顶点的坐标;(2)联结,试判断与是否相似,并证明你的结论;(3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.【小问1详解】解:抛物线经过点,,,设抛物线解析式为:,将点C代入可得:,解得:,∴,∴顶点坐标为:;【小问2详解】解:如图所示:为直角三角形且三边长分别为:,,,的三边长分别为:,,,∴,∴为直角三角形,∵,∴;【小问3详解】解:设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,如(2)中图:∴,,∵,∴,∴为等腰直角三角形,∴,,∴,即解得:,设,∴,,∴,整理得:①,=,即②,将①代入②整理得:,解得:,,∴,,∴或(不符合题意舍去),∴,,设直线FA解析式为:,将两个点代入可得:,解得:,∴,∴联立两个函数得:,将①代入②得:,整理得:,解得:,,当时,,∴.11.(2022静安区一模24)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx经过点A(2,0)和点B(﹣1,m),顶点为点D.(1)求直线AB的表达式;(2)求tan∠ABD的值;(3)设线段BD与x轴交于点P,如果点C在x轴上,且△ABC与△ABP相似,求点C的坐标.【分析】(1)将A(2,0)代入y=x2+bx,求出抛物线解析式,再将B(﹣1,m)代入y=x2﹣2x,求出m的值,然后用待定系数法求直线AB的解析式即可;(2)利用勾股定理判定△ABD是直角三角形,即可求解;(3)求出P点坐标(,0),设C(t,0),当∠ABC=∠APB时,△ABP∽△APC,过B点作BQ⊥x轴交于点Q,则tan∠BCQ==,求出CQ=9,即可求C(﹣10,0);当P点与C点重合时,△ABC≌△ABP,即可求C点坐标.【解答】解:(1)将A(2,0)代入y=x2+bx,∴4+2b=0,∴b=﹣2,∴y=x2﹣2x,将B(﹣1,m)代入y=x2﹣2x,∴m=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴,∴,∴y=﹣x+2;(2)∵y=x2﹣2x=(x﹣1)2﹣1,∴D(1,﹣1),∴AD=,AB=2,BC=3,∵AB2=AD2+BC2,∴△ABD是直角三角形,∴tan∠ABD==;(3)设直线BD的解析式为y=k1x+b1,∴,∴,∴y=﹣2x+1,令y=0,则x=,∴P(,0),设C(t,0),如图1,当∠ABC=∠APB时,△ABC∽△APB,∴∠ACB=∠ABP过B点作BQ⊥x轴交于点Q,∴tan∠BCQ==,∴CQ=9,∴CO=10,∴C(﹣10,0);当C点与P点重合时,△ABC≌△ABP,此时C(,0);综上所述:C点坐标为(﹣10,0)或(,0).【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,相似三角形的性质,利用分类讨论,数形结合思想是解题的关键.1.2(2021年宝山二模24)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣1(a≠0)经过点A(﹣2,0),B(1,0)和点D(﹣3,n),与y轴交于点C.(1)求该抛物线的表达式及点D的坐标;(2)将抛物线平移,使点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论