河南省驻马店泌阳县联考2024年八年级下册数学期末联考试题含解析_第1页
河南省驻马店泌阳县联考2024年八年级下册数学期末联考试题含解析_第2页
河南省驻马店泌阳县联考2024年八年级下册数学期末联考试题含解析_第3页
河南省驻马店泌阳县联考2024年八年级下册数学期末联考试题含解析_第4页
河南省驻马店泌阳县联考2024年八年级下册数学期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省驻马店泌阳县联考2024年八年级下册数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15 B.C. D.2.如图,在中,,,分别以AC,BC为边向外作正方形,两个正方形的面积分别记为,,则等于()A.30 B.150 C.200 D.2253.下列命题中,假命题的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线互相垂直平分的四边形是菱形D.对角线相等且互相垂直的四边形是正方形4.直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个6.不等式组的最小整数解是()A.0 B.-1 C.1 D.27.下列各组数中,不能构成直角三角形的是()A. B. C. D.8.计算(5﹣﹣2)÷(﹣)的结果为()A.﹣5 B.5 C.7 D.﹣79.如图,架在消防车上的云梯AB长为10m,∠ADB=90°,AD=2BD,云梯底部离地面的距离BC为2m,则云梯的顶端离地面的距离AE为(

)A.(2+2)m B.(4+2)m C.(5+2)m D.7m10.与是同类二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若数据,,1,的平均数为0,则__________.12.计算:=____.13.分式与的最简公分母是__________.14.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.15.如图,在边长为1的小正方形组成的网格中,点A,B都在格点上,则线段AB的长度为_________.16.在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.17.汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).18.已知一元二次方程,则根的判别式△=____________.三、解答题(共66分)19.(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.20.(6分)如图,在四边形中,,于点,.求证.21.(6分)已知结论:在直角三角形中,30°所对的直角边是斜边的一半,请利用这个结论进行下列探究活动.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=,D为AB中点,P为AC上一点,连接PD,把△APD沿PD翻折得到△EPD,连接CE.(1)AB=_____,AC=______.(2)若P为AC上一动点,且P点从A点出发,沿AC以每秒一单位长度的速度向C运动,设P点运动时间为t秒.①当t=_____秒时,以A、P、E、D、为顶点可以构成平行四边形.②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.22.(8分)在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为四个等级,其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:(1)在本次竞赛中,班级及以上的人数有多少?(2)请你将下面的表格补充完整:平均数(分)中位数(分)众数(分)级及以上人数班班23.(8分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有一处被墨水污染,已无法看清,但已知全班平均每人捐款38元.捐款(元)1015305060人数361111136(1)根据以上信息可知,被污染处的数据为.(2)该班捐款金额的众数为,中位数为.(3)如果用九年级(1)班捐款情况作为一个样本,请估计全校2000人中捐款在40元以上(包括40元)的人数是多少?24.(8分)已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.25.(10分)用适当方法解方程:.26.(10分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.

参考答案一、选择题(每小题3分,共30分)1、D【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:﹣=.故选D.2、D【解析】

在直角三角形ABC中,利用勾股定理求出的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可.【详解】解:如图∵在Rt△ABC中,∠ACB=90°,AB=15,∴由勾股定理得:AC2+BC2=AB2=225,则S1+S2=AC2+BC2=225,故选:D.【点睛】此题考查了勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.3、D【解析】

根据平行四边形,矩形,菱形和正方形的对角线进行判断即可.【详解】A、矩形的对角线相等,是真命题;B、平行四边形的对角线互相平分,是真命题;C、对角线互相垂直平分的四边形是菱形,是真命题;D、对角线平分、相等且互相垂直的四边形是正方形,是假命题;故选:D.【点睛】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.4、C【解析】

首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【详解】∵y=-2x+3中,k=-2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点睛】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.5、A【解析】

将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.6、A【解析】

解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A7、C【解析】

根据勾股定理的逆定理逐项计算即可.【详解】A.∵32+42=52,∴能构成直角三角形;B.∵12+22=,∴能构成直角三角形;C.∵,∴不能构成直角三角形;D.∵12+=22,∴能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.8、C【解析】

先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】解:原式=(﹣2﹣6)÷(﹣)=﹣1÷(﹣)=1.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9、B【解析】

先根据勾股定理列式求出BD,则AD可求,AE也可求.【详解】解:由勾股定理得:AD2+BD2=AB2,4BD2+BD2=100,BD=2,则AD=2BD=4,AE=AD+DE=4+2.故答案为B【点睛】本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.10、B【解析】

把各选项中的二次根式化为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】A、与不是同类二次根式,故A错误;B、与是同类二次根式,故B正确;C、与不是同类二次根式,故C错误;D、与不是同类二次根式,故D错误;故选:B.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.二、填空题(每小题3分,共24分)11、1【解析】

根据平均数的公式列式计算即可.【详解】解:=0,得a=1,故答案为:1.【点睛】本题主要考查了平均数的计算,要熟练掌握方法.12、4【解析】

根据二次根式的性质化简即可.【详解】原式=.故答案为:4.【点睛】本题考查了二次根式的性质,熟练掌握是解答本题的关键.13、【解析】

分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.【详解】由题意,得其最简公分母是,故答案为:.【点睛】此题主要考查分式的最简公分母,熟练掌握,即可解题.14、x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.15、【解析】

建立格点三角形,利用勾股定理求解AB的长度即可.【详解】如图所示,作出直角三角形ABC,小方格的边长为1,∴由勾股定理得.【点睛】考查了格点中的直角三角形的构造和勾股定理的应用,熟记勾股定理内容是解题关键.16、丙【解析】

方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为=0.56,=0.60,=0.45,=0.50,所以<<<,由此可得成绩最稳定的为丙.故答案为:丙.【点睛】此题考查方差,解题关键在于掌握其定义.17、Q=52﹣8s(0≤s≤6).【解析】

求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.【详解】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余油量为Q=52﹣8s;∵油箱中剩余的油量不能少于4公升,∴52﹣8s≥4,解得s≤6,∴s的取值范围为0≤s≤6.故答案为:Q=52﹣8s(0≤s≤6).【点睛】本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.18、0【解析】

根据一元二次方程根的判别式,将本题中的a、b、c带入即可求出答案.【详解】解:∵一元二次方程,整理得:,可得:,∴根的判别式;故答案为0.【点睛】本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.三、解答题(共66分)19、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【解析】

(1)根据题意和表格中的数据可以得到y关于x的函数关系式;

(2)根据题意可以得到相应的不等式,从而可以解答本题;

(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【点睛】本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.20、见解析【解析】

根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;【详解】证明:连接.∵,∴.∵,∴.∵,∴.∴.∴.【点睛】本题考查了勾股定理的应用,正确作出辅助线是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.21、(1)4,6;(2)①;②存在,t=2或t=6.【解析】

(1)根据含30°角的直角三角形性质可得AB的长,利用勾股定理即可求出AC的长;(2)①根据平行四边形的性质可得AD//PE,AD=PE,根据折叠性质可得PE=AP,即可得AP=AD,由D为AB中点可得AD的长,即可得AP的长,进而可求出t的值;②分两种情况讨论:当BD为边时,设DE与PC相交于O,根据三角形内角和可得∠B=60°,根据平行四边形的性质可得CE=BD,CE//BD,BC//DE,可得∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,根据折叠性质可得∠ADP=∠EDP=30°,AP=PE,即可证明∠ADP=∠A,可得AP=PD=PE,可得∠PED=∠PDE=30°,即可得∠PEC=90°,根据含30°角的直角三角形的性质可得PC=2PE,利用勾股定理列方程可求出PE的长,即可得AP的长;当BD为对角线时,可证明平行四边形BCDE是菱形,根据菱形的性质可得∠DCE=30°,可证明DE=AD,∠ADC=∠CDE=120°,利用SAS可证明△ACD≌△ECD,可得AC=CE,根据翻折的性质可证明点P与点C重合,根据AC的长即可求出t值,综上即可得答案.【详解】(1)∵∠C=90°,∠A=30°,BC=,∴AB=2BC=4,∴AC==6.故答案为:4,6(2)①如图,∵D为AB中点,∴AD=BD=AB,∵BC=AB,∴AD=BD=BC=,∵ADEP是平行四边形,∴AD//PE,AD=PE,∵△APD沿PD翻折得到△EPD,∴AP=PE,∴AP=AD=,∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,∴t=.故答案为:②存在,理由如下:i如图,当BD为边时,设DE与PC相交于O,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵四边形DBCE是平行四边形,∴CE=BD,CE//BD,DE//BC,∴∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,∵△APD沿PD翻折得到△EPD,∴∠ADP=∠EDP=30°,AP=PE,∴∠PAD=∠PDA=30°,∴AP=PD=PE,∴∠PED=∠PDE=30°,∴∠PEC=∠PED+∠DEC=90°,∵∠ECP=30°,∴PC=2PE,∴PC2=PE2+EC2,即4PE2=PE2+()2解得:PE=2或PE=-2(舍去),∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,∴t=2.ii当BD为对角线时,∵BC=BD=AD,∠B=60°,∴△BCD都是等边三角形,∴∠ACD=30°,∵四边形DBCE是平行四边形,∴平行四边形BCDE为菱形,∴DE=AD,∠ADC=∠CDE=120°,又∵CD=CD,∴△ACD≌△ECD,∴AC=CE,∴△ECD是△ACD沿CD翻折得到,∵△APD沿PD翻折得到△EPD,∴点P与点C重合,∴AP=AC=6.∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,∴t=6.故当t=2或t=6时,以B、C、E、D为顶点的四边形是平行四边形.【点睛】本题考查含30°角的直角三角形的性质及平行四边形的性质,在直角三角形中,30°所对的直角边是斜边的一半;熟练掌握相关性质是解题关键.22、(1)21;(2)见详解【解析】

(1)先求出901班总人数,再求902班成绩在C级以上(包括C级)的人数;(2)由中位数和众数的定义解题.【详解】解:(1)901班人数有:6+12+2+5=25(人),∵每班参加比赛的人数相同,∴902班有25人,∴C级以上(包括C级)的人数=25×(44%+4%+36%)=21(人),(2)901班成绩的众数为90分,902班A级学生=25×44%=11,B级学生=25×4%=1,C级学生=25×36%=9,D级学生=25×16%=4,902班中位数为C级学生,即80分,补全表格如下:平均数(分)中位数(分)众数(分)B级及以上人数901班87.6909018902班87.68010012【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了中位数、众数的求法.23、(1)40;(2)50,40;(3)1200人【解析】

(1)根据平均数的定义即可列式求解;(2)根据表格即可求出众数、中位数;(3)先求出捐款40元以上(包括40元)的人数占比,再乘以总人数即可求解.【详解】(1)设被污染处的数据钱数为x,故解得x=40;(2)由表格得众数为50,第25,26位同学捐的钱数为40,故中位数为40;(3)解:全校捐款40元以上(包括40元)的人数为(人)【点睛】此题主要考查统计调查的应用,解题的关键是熟知平均数、中位线、众数的定义.24、(1)证明见解析;(2)证明见解析.【解析】

(1)根据直角三角形斜边上的中线等于斜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论