版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省扬州市江都区江都实验中学八年级数学第二学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB2.如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形从图示位置开始,沿着正方形ABCD的边AB→BC→CD→DA→AB连续地翻转,那么这个小正方形第2018次翻转到箭头与初始位置相同的方向时,小正方形所处的位置()A.在AB边上 B.在BC边上 C.在CD边上 D.在DA边上3.下列图案中,中心对称图形的是()A. B. C. D.4.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF5.如图,四边形ABCD是正方形,AB=1,点F是对角线AC延长线上一点,以BC、CF为邻边作菱形BEFC,连接DE,则DE的长是().A. B. C. D.26.如图,在直角坐标系中,有两点(2,0)和(0,3),则这两点之间的距离是()A.13 B.13 C.5 D.57.下列运算正确的是().A. B.C. D.8.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分9.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.910.已知,若当时,函数的最大值与最小值之差是1,则a的值为()A. B. C.2 D.3二、填空题(每小题3分,共24分)11.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.12.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=.13.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是___________________.它是________命题(填“真”或“假”).14.如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.15.在平面直角坐标系中,将直线y=2x-1向上平移动4个单位长度后,所得直线的解析式为____________.16.如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=______.17.如图,中,,以为斜边作,使分别是的中点,则__________.18.如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.三、解答题(共66分)19.(10分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.(1)当,时,求的长;(2)若,,且轴,判断四边形的形状,并说明理由.20.(6分)某移动通信公司推出了如下两种移动电话计费方式,月使用费/元主叫限定时间/分钟主叫超时费(元/分钟)方式一306000.20方式二506000.25说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;月主叫时间500分钟月主叫时间800分钟方式一收费/元130方式二收费/元50(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.21.(6分)如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.(1)求证:;(2)若菱形的边长为2,.求的长.22.(8分)(1)请计算一组数据的平均数;(2)一组数据的众数为,请计算这组数据的方差;(3)用适当的方法解方程.23.(8分)如图,平面直角坐标系中,,,点是轴上点,点为的中点.(1)求证:;(2)若点在轴正半轴上,且与的距离等于,求点的坐标;(3)如图2,若点在轴正半轴上,且于点,当四边形为平行四边形时,求直线的解析式.24.(8分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.25.(10分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.26.(10分)已知点E、F分别是四边形ABCD边AB、AD上的点,且DE与CF相交于点G.(1)如图①,若AB∥CD,AB=CD,∠A=90°,且AD•DF=AE•DC,求证:DE⊥CF:(2)如图②,若AB∥CD,AB=CD,且∠A=∠EGC时,求证:DE•CD=CF•DA:(3)如图③,若BA=BC=3,DA=DC=4,设DE⊥CF,当∠BAD=90°时,试判断是否为定值,并证明.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据平行四边形的判定方法逐一进行分析判断即可.【详解】A.AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;B.AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;C.AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;D.OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.2、C【解析】
由正方形ABCD的边长是3cm,小正方形的边长为1cm,则小正方形在正方形ABCD每条边上翻转两次,每个直角处翻转一次,小正方形共翻转12次回到原来的位置,即可得到它的方向.【详解】∵正方形ABCD的边长是3cm,小正方形的边长为1cm,∴小正方形在正方形ABCD每条边上翻转两次,每个直角处翻转一次,小正方形翻转12次回到原来的位置,∴2018÷12=它的方向为B选项所指的方向.故选C.【点睛】本题主要利用正方形为背景考查了规律探索,解决这类问题的方法一般是先求解一部分情况,从特殊到一般而后发现规律拓展推广.3、A【解析】
根据中心对称图形的概念求解.【详解】A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.5、C【解析】
延长DC交EF于G,则CG⊥EF,由正方形和菱形的性质得出∠FCG=∠ACD=45°,CD=BC=CF=EF=1,得出△CFG是等腰直角三角形,得出CG=FG,求出DG=CD+CG=1,GE=EF﹣FG=1.在Rt△DEG中,由勾股定理即可得出答案.【详解】延长DC交EF于G,如图所示,则CG⊥EF,∴∠CGF=∠CGE=90°.∵四边形ABCD是正方形,四边形BEFC是菱形,∴∠FCG=∠ACD=45°,CD=BC=CF=EF=1,∴△CFG是等腰直角三角形,∴CG=FGCF,∴DG=CD+CG=1,GE=EF﹣FG=1.在Rt△DEG中,由勾股定理得:DE.故选C.【点睛】本题考查了正方形的性质、菱形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握正方形和菱形的性质,证明△CFG是等腰直角三角形是解题的关键.6、A【解析】
在直角三角形中根据勾股定理即可求解.【详解】解:根据勾股定理得,这两点之间的距离为22故选:A【点睛】本题考查了平面直角坐标系中两点间的距离,对于不在同一直线上的两点,可通过构造直角三角形由勾股定理求距离.7、C【解析】
根据二次根式的性质和法则逐一计算即可判断.【详解】A.是同类二次根式,不能合并,此选项错误;B.=18,此选项错误;C.,此选项正确;D.,此选项错误;故选:C【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是解题关键.8、B【解析】
根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.9、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.10、C【解析】
根据反比例函数的性质和题意,利用分类讨论的数学思想可以求得a的值,本题得以解决.【详解】解:当时,函数中在每个象限内,y随x的增大而增大,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=-2(舍去),当a>0时,函数中在每个象限内,y随x的增大而减小,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=2,故选择:C.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和分类讨论的数学思想解答.二、填空题(每小题3分,共24分)11、(5,4)【解析】
由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).故答案为(5,4).12、1.【解析】试题分析:根据题意画出图形,再由三角形的中位线定理进行解答即可.试题解析:∵△ABC中,D、E分别是△ABC的边AB、AC的中点,DE=2∴DE是△ABC的中位线,∴BC=2DE=2×2=1.考点:三角形中位线定理.13、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14、4cm【解析】
先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=8cm,∴OE=AD=×8=4cm,故答案为:4cm.【点睛】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.15、y=2x+1【解析】
根据直线平移k值不变,只有b发生改变进行解答即可.【详解】由题意得:平移后的解析式为:y=2x-1+4,y=2x+1,故填:y=2x+1.【点睛】本题考查了一次函数图象与几何变换,在解题时,紧紧抓住直线平移后k值不变这一性质即可.16、或1【解析】
连接AC,如图1所示:由矩形的性质得到∠D=90°,AD=BC=4,OA=OC,AB∥DC,求得∠OAF=∠OCE,根据全等三角形的性质得到AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,根据勾股定理即可得到结论;②当AE=EF时,作EG⊥AF于G,如图1所示:设AF=CE=x,则DE=6-x,AG=x,列方程即可得到结论;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,根据勾股定理即可得到结论.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,OA=OC,AB∥DC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,在Rt△ADE中,由勾股定理得:41+(6-x)1=x1,解得:x=,即DE=;②当AE=EF时,作EG⊥AF于G,如图1所示:则AG=AE=DE,设AF=CE=x,则DE=6-x,AG=x,∴x=6-x,解得:x=4,∴DE=1;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,∴EH=CE-CH=x-(6-x)=1x-6,在Rt△EFH中,由勾股定理得:41+(1x-6)1=x1,整理得:3x1-14x+51=0,∵△=(-14)1-4×3×51<0,∴此方程无解;综上所述:△AEF是等腰三角形,则DE为或1;故答案为:或1.【点睛】此题考查矩形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,根据勾股定理得出方程是解题的关键,注意分类讨论.17、【解析】
先根据题意判断出△DEF的形状,由平行线的性质得出∠EFC的度数,再由三角形外角的性质求出∠DFC的度数,再根据三角形内角和定理即可得出结论.【详解】∵E、F分别是BC、AC的中点,∠CAD=∠CAB=28°,∴EF是△ABC的中位线,∴EF=AB,∠EFC=∠CAB=26°.∵AB=AC,△ACD是直角三角形,点E是斜边AC的中点,∴DF=AF=CF,∴DF=EF,∠CAD=∠ADF=28°.∵∠DFC是△AFD的外角,∴∠DFC=28°+28°=56°,∴∠EFD=∠EFC+∠DFC=28°+56°=84°,∴∠EDF==48°.故答案为:48°.【点睛】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.18、-1【解析】
根据平方差公式求出即可.【详解】解:∵a+b=8,a﹣b=﹣5,∴a2﹣b2=(a+b)(a﹣b)),=8×(﹣5),=﹣1,故答案为:﹣1.【点睛】本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.三、解答题(共66分)19、(1)BC=1;(2)四边形OBDA是平行四边形,见解析.【解析】
(1)理由待定系数法求出点D坐标即可解决问题;(2)四边形OBDA是平行四边形.想办法证明BD=OA=3即可解决问题.【详解】解:(1)当m=-2,n=1时,直线的解析式为y=-2x+1,当x=1时,y=-1,∴B(1,-1),∴BC=1.(2)结论:四边形OBDA是平行四边形.理由:如图,∵BD∥x轴,B(1,1-m),D(4,3+m),∴1-m=3+m,∴m=-1,∵B(1,m+n),∴m+n=1-m,∴n=3,∴直线y=-x+3,∴A(3,0),∴OA=3,BD=3,∴OA=BD,OA∥BD,∴四边形OBDA是平行四边形.【点睛】本题考查一次函数图象上点的特征,平行四边形的判断等知识,解题的关键是熟练掌握待定系数法,灵活运用所学知识解决问题,属于中考常考题型.20、(1)70;100;(2)详见解析;(3)当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【解析】
(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【详解】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点睛】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.21、(1)证明见解析(1)【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;(1)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.
∴OE=CD.(1)在菱形ABCD中,∠ABC=60°,∴AC=AB=1.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.22、(1)4;(2);(3)【解析】
(1)根据算数平均数公式求解即可;(2)根据众数的概念求得x的值,然后利用方差公式计算进行即可;(3)用因式分解法解一元二次方程.【详解】解:(1)∴这组数据的平均数为4;(2)由题意可知:x=2∴∴这组数据的方差为;(3)或∴【点睛】本题考查平均数,众数,方差的概念及计算,考查因式分解法解一元二次方程,掌握相关概念和公式,正确计算是解题关键.23、(1)见解析;(2);(3)【解析】
(1)由A与B的坐标确定OA和OB的长,进而确定B为OA的中点,而D为OC的中点,利用中位线定理即可证明;(2)作BF⊥AC于点F,取AB的中点G,确定出G坐标;由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理求出OA的长,即可确定C的坐标;(3)当四边形ABDE为平行四边形,可得AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE;再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标;设直线AC解析式为y=kx+b,利用待定系数法即可确定的解析式.【详解】解:(1),,,,是的中点,又是的中点,是的中位线,.(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3);∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:∵OA=4∴..(3)如图2,当四边形ABDE为平行四边形,∴AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠0CA=45°,∴OC=0A=4,∴点C的坐标为(4,0)或(-4,0),设直线AC的解析式为y=kx+b(k≠0).由题意得:解得:直线的解析式为.【点睛】此题属于一次函数和几何知识的综合,熟练掌握一次函数的性质和相关几何定理是解答本题的关键.24、答案见解析【解析】分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.详解:∵O是AC的中点,且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四边形AECF是菱形;点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.25、m=-2,n=-2,B(1,-2).【解析】
利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.【详解】解:∵直线y=mx与双曲线相交于A(-1,2),∴m=-2,n=-2,∵A,B关于原点对称,∴B(1,-2).【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学老师2022新学期工作计划
- 学生会主席年度工作规划3篇
- 设计师年度工作总结汇编15篇
- 班主任手册周工作计划内容
- “三生教育”心得体会6篇
- 因个人原因的辞职报告(15篇)
- 中国法制史 第四章 刑事法律制度
- 2025年高速精密平板切纸机项目发展计划
- 兄弟赡养父母协议书(2篇)
- 公共关系专家中介合同(2篇)
- GB/T 43474-2023江河生态安全评估技术指南
- 人教版三年级数学上册第五单元:倍数问题提高部分(解析版)
- 脐疝护理查房
- 基于人工智能的恶意域名检测技术研究
- 简单的个人包工合同
- 每日食品安全检查记录
- 社区电动车应急预案方案
- 项目成本节约措施总结报告
- 公司股东债务分配承担协议书正规范本(通用版)
- 高中化学课件:水溶液中离子平衡图像分析
- 平安工地、品质工程建设方案
评论
0/150
提交评论