2024年浙江省诸暨市浬浦镇中学数学八年级下册期末质量检测模拟试题含解析_第1页
2024年浙江省诸暨市浬浦镇中学数学八年级下册期末质量检测模拟试题含解析_第2页
2024年浙江省诸暨市浬浦镇中学数学八年级下册期末质量检测模拟试题含解析_第3页
2024年浙江省诸暨市浬浦镇中学数学八年级下册期末质量检测模拟试题含解析_第4页
2024年浙江省诸暨市浬浦镇中学数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省诸暨市浬浦镇中学数学八年级下册期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.242.如图,平行四边形ABCD中,于点E,CE的垂真平分线MV分别交AD、BC于M、N,交CE于O,连接CM、EM,下列结论:(1)(2)(3)(4)·其中正确的个数有()A.1个 B.2个 C.3个 D.4个3.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为,点B的坐标为,点C在第一象限,对角线BD与x轴平行直线与x轴、y轴分别交于点E,将菱形ABCD沿x轴向左平移m个单位,当点D落在的内部时不包括三角形的边,m的值可能是A.3 B.4 C.5 D.64.一元二次方程的解为()A. B.B. C., D.,5.如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为()A.25cm B.20cmC.20cm D.20cm6.若关于x的一元二次方程kx2+2x–1=0有实数根,则实数k的取值范围是A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠07.矩形OABC在平面直角坐标系中的位置如图所示,已知,点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作,交x轴于点D.下列结论:①;②当点D运动到OA的中点处时,;③在运动过程中,是一个定值;④当△ODP为等腰三角形时,点D的坐标为.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个8.如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=30°,那么∠AOB度数是(A.30° B.C.60° D.9.下列命题,其中正确的有()①平行四边形的两组对边分别平行且相等②平行四边形的对角线互相垂直平分③平行四边形的对角相等,邻角互补④平行四边形只有一组对边相等,一组对边平行A.1个 B.2个 C.3个 D.4个10.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:得分(分60708090100人数(人8121073则得分的中位数和众数分别为A.75,70 B.75,80 C.80,70 D.80,8011.在Rt△ABC中,斜边长AB=3,AB²+AC²+BC²的值为()A.18 B.24 C.15 D.无法计算12.如图,在△ABC中,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若∠BAD=45°,则∠B的度数为()A.75° B.65° C.55° D.45°二、填空题(每题4分,共24分)13.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________

米14.已知锐角,且sin=cos35°,则=______度.15.换元法解方程时,可设,那么原方程可化为关于的整式方程为_________.16.化简:(2)2=_____.17.从1、2、3、4这四个数中一次随机地取两个数,则其中一个数是另一个数两倍的概率是.18.若,则________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.(1)求直线BE的解析式;(2)求点D的坐标;20.(8分)如图,矩形纸片ABCD中,AD=8,点E为AD上一点,将纸片沿BE折叠,使点F落到CD边上,若DF=4,求EF的长.21.(8分)又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.(1)扇形统计图中表示B类的扇形的圆心角是度,并补全条形统计图;(2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.22.(10分)2018长春国际马拉松赛于2018年5月27日在长春市举行,其中10公里跑起点是长春体育中心,终点是卫星广场.比赛当天赛道上距离起点5km处设置一个饮料站,距离起点7.5km处设置一个食品补给站.小明报名参加了10公里跑项目.为了更好的完成比赛,小明在比赛前进行了一次模拟跑,从起点出发,沿赛道跑向终点,小明匀速跑完前半程后,将速度提高了,继续匀速跑完后半程.小明与终点之间的路程与时间之间的函数图象如图所示,根据图中信息,完成以下问题.(1公里=1千米)(1)小明从起点匀速跑到饮料站的速度为_______,小明跑完全程所用时间为________;(2)求小明从饮料站跑到终点的过程中与之间的函数关系式;(3)求小明从起点跑到食品补给站所用时间.23.(10分)如图,在四边形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.求:(1)AC的长度;(2)判断△ACB是什么三角形?并说明理由?(3)四边形ABCD的面积。24.(10分)如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.(1)求证:AE=DE(2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.25.(12分)如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接(1)菱形的边长是________;(2)求直线的解析式;(3)动点从点出发,沿折线以2个单位长度/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.26.某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?

参考答案一、选择题(每题4分,共48分)1、B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.2、C【解析】

①由平行四边形性质可得AB∥CD,由线段垂直平分线性质可得ME=MC,再根据等角的余角相等可得①正确;②构造△AME≌△DMG(ASA),即可证明②正确;③利用平行四边形性质、线段垂直平分线性质和AD=2AB可得四边形CDMN是菱形,依据菱形性质即可证明③正确;④S△CDM=S菱形CDMN,S四边形BEON<S菱形CDMN,④不一定成立;【详解】解:延长EM交CD的延长线于G,如图,

∵ABCD是平行四边形,

∴AB∥CD

∴∠AEM=∠G

∵CE⊥AB

∴CE⊥CD

∵MN垂直平分CE,

∴ME=MC

∴∠MEC=∠MCE

∵∠MEC+∠G=90°,∠MCE+∠DCM=90°

∴∠DCM=∠G

∴∠AEM=∠DCM

故①正确;

∵∠DCM=∠G

∴MC=MG

∴ME=MG

∵∠AME=∠DMG

∴△AME≌△DMG(ASA)

∴AM=DM

故②正确;

∵ABCD是平行四边形,

∴AB∥CD,AB=CD,AD∥BC,AD=BC

∵CE⊥AB,MN⊥CE

∴AB∥MN∥CD

∴四边形ABNM、四边形CDMN均为平行四边形

∴MN=AB

∵AM=MD=AD,AD=2AB

∴MD=CD=MN=NC

∴四边形CDMN是菱形

∴∠BCD=2∠DCM,

故③正确;

设菱形ABNM的高为h,则S△CDM=S菱形CDMN,S四边形BEON=(BE+ON)×h=ON×h

∵OM=(AE+CD)

∴CD<OM<AB

∴ON<CD

∴S四边形BEON<CD×h=S菱形CDMN,

故④不一定成立;

故选C.【点睛】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.3、C【解析】

根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到MN上时的x的值,从而得到m的取值范围.【详解】∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=-2,∴点D向左移动2+4=1时,点D在EF上,∵点D落在△EOF的内部时(不包括三角形的边),∴4<m<1.∴m的值可能是5.故选C【点睛】本题考查的是一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m的取值范围是解题的关键.4、D【解析】

把方程整理成,然后因式分解求解即可.【详解】解:把方程整理成即∴或解得:,故选:D.【点睛】此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.5、D【解析】

根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为10,那么就求得了各边长,让各边长相加即可.【详解】∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=AC=5cm,同理EF=5cm,根据矩形的对角线相等,连接BD,得到:EH=FG=5cm,∴四边形EFGH的周长为20cm.故选D.【点睛】本题考查三角形中位线等于第三边的一半的性质.6、C【解析】解:∵一元二次方程kx2﹣2x﹣1=1有两个实数根,∴△=b2﹣4ac=4+4k≥1,且k≠1,解得:k≥﹣1且k≠1.故选C.点睛:此题考查了一元二次方程根的判别式,根的判别式的值大于1,方程有两个不相等的实数根;根的判别式的值等于1,方程有两个相等的实数根;根的判别式的值小于1,方程没有实数根.7、D【解析】

①根据矩形的性质即可得到;故①正确;②由点D为OA的中点,得到,根据勾股定理即可得到,故②正确;③如图,过点P作于F,FP的延长线交BC于E,,则,根据三角函数的定义得到,求得,根据相似三角形的性质得到,根据三角函数的定义得到,故③正确;④当为等腰三角形时,Ⅰ、,解直角三角形得到,Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;Ⅲ、,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;于是得到当为等腰三角形时,点D的坐标为.故④正确.【详解】解:①∵四边形OABC是矩形,,;故①正确;②∵点D为OA的中点,,,故②正确;③如图,过点P作A于F,FP的延长线交BC于E,,四边形OFEC是矩形,,设,则,在中,,,,,,,,,,,,,,,故③正确;④,四边形OABC是矩形,,,,当为等腰三角形时,Ⅰ、Ⅱ、,,故不合题意舍去;Ⅲ、,,故不合题意舍去,∴当为等腰三角形时,点D的坐标为.故④正确,故选:D.【点睛】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.8、C【解析】

只要证明OA=OD,根据三角形的外角的性质即可解决问题.【详解】解:∵四边形ABCD是矩形,∴OA=12AC,OD=12BD,AC=∴OA=OB,∴∠OAD=∠ODA=30°,∵∠AOB=∠OAD+∠ODA=60°.故选:C.【点睛】本题考查矩形的性质、等腰三角形的性质,三角形外角的性质等知识,解题的关键是根据矩形的性质得出OA=OB.9、B【解析】

根据平行四边形的性质判断即可.【详解】解:①平行四边形的两组对边分别平行且相等,正确;②平行四边形的对角线互相平分,但不一定垂直,错误;③平行四边形的对角相等,邻角互补,正确;④平行四边形两组对边分别平行且相等,不是只有一组相等,一组平行,错误,正确的有2个.故选B.【点睛】本题考查了平行四边形的性质,平行四边形的两组对边分别平行且相等,对角线互相平分,对角相等,邻角互补,熟练掌握平行四边形的性质是解题的关键.10、A【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是(分),得70分的人数最多,有12人,故众数为70(分),故选.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.11、A【解析】

根据题意运用勾股定理进行分析计算即可得出答案.【详解】解:∵Rt△ABC中,斜边是AB,∴AC²+BC²=AB²,∵AB=3,∴AC²+BC²=AB²=9,∴AB²+AC²+BC²=9+9=18.故选:A.【点睛】本题考查勾股定理.根据题意正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.12、A【解析】

由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【详解】解:由作法得MN垂直平分AC,

∴DA=DC,

∴∠DAC=∠C=30°,

∴∠BAC=∠BAD+∠DAC=45°+30°=75°,

∵∠B+∠C+∠BAC=180°,

∴∠B=180°-75°-30°=75°.

故选:A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).二、填空题(每题4分,共24分)13、不稳定性;4.2【解析】

(1)根据四边形的不稳定性即可解决问题.(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.【详解】解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.

又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.故答案为:不稳定性,4.2.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14、1【解析】

对于任意锐角A,有sinA=cos(90°-A),可得结论.【详解】解:∵sinα=cos35°,∴α=90°-35°=1°,故答案为:1.【点睛】此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.15、【解析】

换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是设,换元后整理即可求得.【详解】解:把

代入方程得:,

方程两边同乘以y得:.

故答案为:【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.16、1.【解析】

根据二次根式的性质:进行化简即可得出答案.【详解】故答案为:1.【点睛】本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.17、【解析】

从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为;18、【解析】

由,得到a=b,代入所求的代数式,即可解决问题.【详解】∵,∴a=b,∴,故答案为:.【点睛】该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.三、解答题(共78分)19、(1)直线BE的解析式为y=x+2;(2)D(-3,).【解析】

(1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;(2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.【详解】(1),令x=0,则y=2,令y=0,则,解得:x=-6,∴A(-6,0),B(0,2),∴OA=6,OB=2,∴AB==4,∵折叠,∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,∴∠ADE=90°,AD=AB-BD=2,设DE=EO=m,则AE=AO-OE=6-m,在Rt△ADE中,AE2=AD2+DE2,即(6-m)2=m2+(2)2,解得:m=2,∴OE=2,∴E(-2,0),设直线BE的解析式为:y=kx+b,把B、E坐标分别代入得:,解得:,∴直线BE的解析式为y=x+2;(2)过点D作DM⊥AO,垂足为M,由(1)DE=2,AE=AO-OE=4,∵S△ADE=,即,∴DM=,∴点D的纵坐标为,把y=代入,得,解得:x=-3,∴D(-3,).【点睛】本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.20、EF的长为1.【解析】

设AE=EF=x,则DE=8﹣x,在Rt△DEF中,根据勾股定理列方程42+(8﹣x)2=x2,解方程即可求得EF的长.【详解】设AE=EF=x,∵AD=8,∴DE=8﹣x,∵DF=4在Rt△DEF中,∠D=90°,∴42+(8﹣x)2=x2,∴x=1.答:EF的长为1.【点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理以及等知识点,利用勾股定理列出方程是解题的关键.21、(1)144(2)【解析】

(1)先根据A类型人数及其所占百分比求得总人数,继而根据各类型人数之和等于总人数求得B的人数,再用360°乘以B类型人数所占比例可得;(2)列表得出所有等可能结果,从中找打符合条件的结果数,再利用概率公式可得答案.【详解】解:(1)∵被调查的人数为45÷30%=150人,∴B等级人数为150﹣(45+15+30)=60人,则扇形统计图中表示B类的扇形的圆心角是360°×=144°,补全图形如下:故答案为144;(2)列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由树状图(或表格)可知,所有等可能的结果共12种,其中包含甲同学的有6种,所以P(甲同学的经验刊登在班刊上的概率)=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22、(1),1.2;(2)S=﹣10t+12(0.7≤t≤1.2);(3)0.95【解析】

(1)根据图象可知小明从起点匀速跑到饮料站用时0.7小时,根据“速度=路程÷时间”即可解答;(2)根据题意和函数图象中的数据可以求得小明从饮料站跑到终点的过程中S与t之间的函数表达式;(3)根据题意,可以列出关于a的不等式,从而可以求得a的取值范围,本题得以解决.【详解】解:(1)小明从起点匀速跑到饮料站的速度为:km/h,小明跑完全程所用时间为:(小时);故答案为:;1.2;(2)设明张从饮料站跑到终点的过程中S与t之间的函数表达式为S=kt+b,,解得,即小明从饮料站跑到终点的过程中S与t之间的函数表达式为S=﹣10t+12(0.7≤t≤1.2);(3)10﹣7.5=2.5,∴将S=2.5代入S=﹣10t+12,得2.5=﹣10t+12,得t=0.95,答:小明从起点跑到食品补给站所用的时间为0.95小时.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和数形结合的思想解答.23、(1)5(2)直角三角形,理由见解析(3)36【解析】

在直角三角形ABD中,利用勾股定理求出BD的长,再利用勾股定理的逆定理得到三角形BCD为直角三角形,根据四边形ABCD的面积=直角三角形ABD的面积+直角三角形BCD的面积,即可求出四边形的面积.【详解】(1)在Rt△ACD中,CD=4,AD=3由勾股定理,得CD+AD=AC∴AC==5;(2)△ACD是直角三角形;理由如下:∵AB=13,BC=12,AC=5∴BC+AC=12+5=169AB=13=169∴BC+AC=AB∴△ACB是Rt△,∠ACB=90°;(3)S四边形ABCD=S△ABC+S△ACD=×12×5+×4×3=30+6=36.【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于求出BD的长24、(1)详见解析;(2)【解析】

(1)证明△ABE≌△DCE,可得结论;(2)作辅助线,构建直角三角形,根据等腰三角形的性质得∠BCG=30°,∠DEF=30°,利用正方形的边长计算DE的长,从而得DF的长.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCE是等边三角形,∴BE=CE,∠EBC=∠ECB=60°,即∠ABE=∠DCE=150°,∴△ABE≌△DCE,∴AE=DE;(2)解:过点E作EG⊥CD于G,∵DC=CE,∠DCE=150°,∴∠CDE=∠CED=15°,∴∠ECG=30°,∵CB=CD=AB=2,∴EG=1,CG=,在Rt△DGE中,DE=,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论