版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市洪湖市瞿家湾中学2024年八年级下册数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.体育课上,某班三名同学分别进行了6次短跑训练,要判断哪一名同学的短跑成绩比较稳定,通常需要比较三名同学短跑成绩的()A.平均数 B.频数 C.方差 D.中位数2.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A.AB=AD B.AC=BD C.∠ABC=90° D.∠ABC=∠ADC3.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.104.使分式有意义的的值是()A. B. C. D.5.下列命题是真命题的是()A.平行四边形对角线相等 B.直角三角形两锐角互补C.不等式﹣2x﹣1<0的解是x<﹣ D.多边形的外角和为360°6.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是()A.①②③ B.①②④ C.①②⑤ D.②④⑤7.在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟8.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.3,4,5 B. C.30,40,50 D.0.3,0.4,0.59.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是()A.(3,6) B.(3,7) C.(3,8) D.(6,4)10.正方形的边长为,在其的对角线上取一点,使得,以为边作正方形,如图所示,若以为原点建立平面直角坐标系,点在轴正半轴上,点在轴的正半轴上,则点的坐标为()A. B. C. D.11.为了解某校八年级900名学生每天做家庭作业所用的时间,随机抽取其中120名学生进行抽样调查下列说法正确的是()A.该校八年级全体学生是总体 B.从中抽取的120名学生是个体C.每个八年级学生是总体的一个样本 D.样本容量是12012.在Rt△ABC中,斜边长AB=3,AB²+AC²+BC²的值为()A.18 B.24 C.15 D.无法计算二、填空题(每题4分,共24分)13.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.14.若有意义,则的取值范围是_______15.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.16.若是整数,则最小的正整数n的值是_____________。17.关于x的方程(a≠0)的解x=4,则的值为__.18.已知:一组数据,,,,的平均数是22,方差是13,那么另一组数据,,,,的方差是__________.三、解答题(共78分)19.(8分)如图,正方形,点为对角线上一个动点,为边上一点,且.(1)求证:;(2)若四边形的面积为25,试探求与满足的数量关系式;(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.20.(8分)已知如图:直线AB解析式为,其图像与坐标轴x,y轴分别相交于A、B两点,点P在线段AB上由A向B点以每秒2个单位运动,点C在线段OB上由O向B点以每秒1个单位运动(其中一点先到达终点则都停止运动),过点P与x轴垂直的直线交直线AO于点Q.设运动的时间为t秒(t≥0).(1)直接写出:A、B两点的坐标A(),B().∠BAO=______________度;(2)用含t的代数式分别表示:CB=,PQ=;(3)是否存在t的值,使四边形PBCQ为平行四边形?若存在,求出t的值;若不存在,说明理由;(4)(3分)是否存在t的值,使四边形PBCQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点C的速度(匀速运动),使四边形PBCQ在某一时刻为菱形,求点C的速度和时间t.21.(8分)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点。(1)求函数的图像上和谐点的坐标;(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围.22.(10分)先化简,再求值:,其中x=﹣1.23.(10分)计算:24.(10分)(1)解不等式:(2)解方程:25.(12分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.26.已知:如图,在▱ABCD中,设=,=.(1)填空:=(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生6次短跑训练成绩的方差.【详解】由于方差能反映数据的稳定性,需要比较这两名学生6次短跑训练成绩的方差.故选C.【点睛】本题考查了方差,关键是掌握方差所表示的意义,属于基础题,比较简单.2、A【解析】
根据菱形的定义和判定定理即可作出判断.【详解】A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90°时,平行四边形ABCD是矩形,故C选项不符合题意;D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,故选A.【点睛】本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.3、C【解析】
根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.【详解】在△ABC中,AB=AC,AD是∠BAC的平分线,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根据勾股定理得:BD===4BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.4、D【解析】
分式有意义的条件是分母不等于0,即x﹣1≠0,解得x的取值范围.【详解】若分式有意义,则x﹣1≠0,解得:x≠1.故选D.【点睛】本题考查了分式有意义的条件:当分母不为0时,分式有意义.5、D【解析】
根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.【详解】平行四边形对角线不一定相等,A是假命题;直角三角形两锐角互余,B是假命题;不等式-2x-1<0的解是x>-,C是假命题;多边形的外角和为360°,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、B【解析】
①利用对称轴x=1判定;
②把A(1,3)代入直线y2=mx+n即可判定;
③根据对称性判断;
④方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.⑤由图象得出,当1≤x≤4时,有y2≤y1;【详解】由抛物线对称轴为直线x=﹣,从而b=﹣2a,则2a+b=0故①正确;直线y2=mx+n过点A,把A(1,3)代入得m+n=3,故②正确;由抛物线对称性,与x轴的一个交点B(4,0),则另一个交点坐标为(2,0)故③错误;方程ax2+bx+c=3从函数角度可以看做是y=ax2+bx+c与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax2+bx+c=3有两个相等的实数根,因而④正确;由图象可知,当1≤x≤4时,有y2≤y1故当x=1或4时y2=y1故⑤错误.故选B.【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.7、C【解析】
由横纵坐标可判断A、B,观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断C,由图象得乙队在1.1至1.9分钟的路程为300米,可判断D.【详解】由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;由横坐标可以看出,乙队先到达终点,故选项B正确;∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,∴乙队的速度比甲队的速度慢,故C选项错误;∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.故选C.【点睛】本题主要考查一次函数的图象与实际应用,观察图象理解图象中每个特殊点的实际意义是解题的关键.8、B【解析】分析:根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.详解:A.∵32+42=52,∴以这三个数为长度的线段能构成直角三角形.故选项错误;B.∵()2+()2≠()2,∴以这三个数为长度的线段不能构成直角三角形.故选项正确;C.∵(30)2+(40)2=(50)2,∴以这三个数为长度的线段,能构成直角三角形.故选项错误;D.∵()2+(0.4)2=(0.5)2,∴以这三个数为长度的线段能构成直角三角形.故选项错误.故选B.点睛:本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.9、C【解析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.【详解】由点A(3,-4)对应点A′(5,2),知点A向右平移了2个单位,再向上平移了6个单位,所以,点B也是向右平移了2个单位,再向上平移了6个单位,B(1,2)平移后,变成:B′(3,8),故选C.【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、D【解析】
作辅助线,根据正方形对角线平分内角的性质可证明△AGH是等腰直角三角形,计算GH和BH的长,可解答.【详解】解:过G作GH⊥x轴于H,
∵四边形ABCD是正方形,
∴∠BAC=45°,
∵四边形AEFG是正方形,AE=AB=2,
∴∠EAG=90°,AG=2,
∴∠HAG=45°,∵∠AHG=90°,
∴AH=GH=,
∴G(,2+),
故选:D.【点睛】本题考查了正方形的性质,等腰直角三角形的性质和判定等知识,掌握等腰直角三角形各边的关系是关键,理解坐标与图形性质.11、D【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B.每个学生每天做家庭作业所用的时间是个体,故B不符合题意;C.从中抽取的120名学生每天做家庭作业所用的时间是一个样本,故C不符合题意;D.样本容量是120,故D符合题意;故选:D.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12、A【解析】
根据题意运用勾股定理进行分析计算即可得出答案.【详解】解:∵Rt△ABC中,斜边是AB,∴AC²+BC²=AB²,∵AB=3,∴AC²+BC²=AB²=9,∴AB²+AC²+BC²=9+9=18.故选:A.【点睛】本题考查勾股定理.根据题意正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.二、填空题(每题4分,共24分)13、21【解析】
先利用勾股定理求出斜边为130米,根据数的间距可求出树的棵数.【详解】∵斜坡的水平距离为120米,高50米,∴斜坡长为米,又∵树的间距为6.5,∴可种130÷6.5+1=21棵.【点睛】此题主要考察勾股定理的的应用.14、【解析】
根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:代数式有意义,,解得:.故答案为:.【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.15、【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【点睛】此题考查概率公式,掌握运算法则是解题关键16、1【解析】
是整数则1n一定是一个完全平方数,把1分解因数即可确定.【详解】解:∵1=1×1,
∴n的最小值是1.
故答案为:1.【点睛】本题考查了二次根式的定义:一般地,我们把形如a(a≥0)的式子叫做二次根式.也考查了=|a|.17、4【解析】
将x=4代入已知方程求得b=4a,然后将其代入所以的代数式求值.【详解】∵关于x的方程(a≠0)的解x=4,∴,∴b=4a,∴=,故答案是:4.【点睛】此题考查分式方程的解,分式的化简求值,解题关键在于求得b=4a18、1.【解析】
根据平均数,方差的公式进行计算.【详解】解:依题意,得==22,∴=110,∴3a-2,3b-2,3c-2,3d-2,3e-2的平均数为==×(3×110-2×5)=64,∵数据a,b,c,d,e的方差13,S2=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]=13,∴数据3a-2,3b-2,3c-2,3d-2,3e-2方差S′2=[(3a-2-64)2+(3b-2-64)2+(3c-2-64)2+(3d-2-64)2+(3e-2-64)2]=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]×9=13×9=1.故答案为:1.【点睛】本题考查了平均数、方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.三、解答题(共78分)19、(1)见解析;(2);(3).【解析】
(1)如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEB≌△PFQ即可解决问题;(2)根据S四边形BCQP=S四边形CEPF即可解决问题;(3)如图2,过P做EF∥AD分别交AB和CD于E、F,易知,由,推出,由,推出,由此即可解决问题.【详解】(1)如图1中,作于,于,四边形是正方形,,于,于,,,四边形是矩形,,四边形是正方形,,,,,;(2)如图1中,由(1)可知,四边形是正方形,,,,,,,;(3)如图2,过做分别交和于、,,,,,,,.【点睛】本题考查的是四边形综合题,涉及了全等三角形的判定和性质、正方形的性质和判定等知识,正确添加辅助线,灵活运用所学知识是解题的关键.20、(1),∠BAO=30°;(2);(3)见解析;(4)当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.【解析】【分析】(1)设x=0,y=0可分别求出A,B的坐标;(2)纵坐标的差等于线段长度;(3)当PQ=BC时,即,是平行四边形;(4)时,,,所以不可能是菱形;若四边形PBCQ构成菱形则,PQ=BC,且PQ=PB时成立.【详解】解:(1)直接写出:A、B两点的坐标,∠BAO=30°(2)用含t的代数式分别表示:;(3)∵∴当PQ=BC时,即,时,四边形PBCQ是平行四边形.(4)∵时,,,∴四边形PBCQ不能构成菱形。若四边形PBCQ构成菱形则,PQ=BC,且PQ=PB时成立.则有时BC=BP=PQ=OC=OB-BC=∴当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.【点睛】本题考核知识点:一次函数,平行四边形,菱形的判定.此题是综合题,要用数形结合思想进行分析.21、(1);(2)2≤m≤4【解析】
(1)根据和谐点的横坐标与纵坐标相同,设和谐点的坐标为(a,a),代入可得关于a的方程,解方程可得答案.
(2)根据和谐点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为=,从而求得a=-1,c=−,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.【详解】(1)设和谐点的坐标为(a,a),则a=-2a+1解得:a=,∴函数的图像上和谐点的坐标为.(2)令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为,解得a=﹣1,c=.故函数y=ax2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保安安全管理制度
- 某垃圾填埋场生化出水深度处理工艺实例
- 基于二零二四年度云服务技术的数据存储合同
- 2024年度人力资源管理项目外包合同2篇
- 法律职业资格考试客观题(试卷一)试题及答案指导(2025年)
- 2024年度工程合同管理质量保证合同3篇
- 基于云计算的农田灌溉管理系统平台开发合同(04版)
- 铝单板项目2024年度合作开发合同
- 工程承包合同协议书
- 旅行社2024年度租车需求预测合同
- 注册消防工程师2021年继续教育石油化工试题
- 药品质量检查原始记录
- 《通过练习学习有机反应机理》福山透三氢剑魔汉化
- DB43-T 2237-2021油茶嫁接苗与实生苗形态鉴别及检测
- 信息化建设项目监理工作总结报告
- 球罐喷淋管安装施工方案
- GB/T 6792-2009客车骨架应力和形变测量方法
- GB/T 31989-2015高压电力用户用电安全
- GRS-化学品管理手册
- GB 2721-2015食品安全国家标准食用盐
- 电气第一种第二种工作票专题培训课件
评论
0/150
提交评论