版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省开江县2024年数学八年级下册期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.2.下列各式:,,,,(x+y)中,是分式的共有()A.1个 B.2个 C.3个 D.4个3.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A. B. C. D.4.等腰中,,用尺规作图作出线段BD,则下列结论错误的是()A. B. C. D.的周长5.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A. B.C. D.6.关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A.0 B.2 C.2或﹣2 D.﹣27.已知a>b,则下列不等式一定成立的是()A.ac>bc B.-2a>-2bC.-a<-b D.a-2<b-28.若,则()A.7 B.-7 C.5 D.-59.若等腰三角形底边长为8,腰长是方程的一个根,则这个三角形的周长是()A.16 B.18 C.16或18 D.2110.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是().A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90º时,它是矩形D.当AC⊥BD时,它是菱形11.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形 B.矩形 C.菱形 D.梯形12.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=13BD,连接DM、DN、MN.若AB=6,则DN=___14.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是_____.15.如图,和都是等腰直角三角形,,的顶点在的斜边上,若,则____.16.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.17.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.18.如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.三、解答题(共78分)19.(8分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.20.(8分)在菱形中,点是边的中点,试分别在下列两个图形中按要求使用无刻度的直尺画图.(1)在图1中,过点画的平行线;(2)在图2中,连接,在上找一点,使点到点,的距离之和最短.21.(8分)已知:如图,在△ABC中,∠A=120°,AB=4,AC=2.求BC边的长.22.(10分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.(1)求该厂今年产量的月平均増长率为多少?(2)预计月份的产量为多少万台?23.(10分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.24.(10分)阅读下列一段文字,然后回答下列问题:已知平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离。例如:已知P(3,1),Q(1,-2),则这两点间的距离.特别地,如果两点M(x1,y1),N(x2,y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为或。(1)已知A(2,3),B(-1,-2),则A,B两点间的距离为_________;(2)已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为_________;(3)在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.25.(12分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.(1)如图1,求证:(2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.26.在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”.如图为点、的“极好菱形”的一个示意图.已知点的坐标为,点的坐标为.(1)点,,中,能够成为点、的“极好菱形”的顶点的是.(2)若点、的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标.(3)如果四边形是点、的“极好菱形”.①当点的坐标为时,求四边形的面积.②当四边形的面积为8,且与直线有公共点时,直接写出的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.2、C【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,,分母中含有字母,因此是分式;,的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选C.【点睛】本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.3、B【解析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.【详解】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长==故选:B.【点睛】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.4、C【解析】
根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【详解】解:∵等腰△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
由作图痕迹发现BD平分∠ABC,
∴∠A=∠ABD=∠DBC=36°,
∴AD=BD,故A、B正确;
∵AD≠CD,
∴S△ABD=S△BCD错误,故C错误;
△BCD的周长=BC+CD+BD=BC+AC=BC+AB,
故D正确.
故选C.【点睛】本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.5、A【解析】
根据高线的定义即可得出结论.【详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.6、C【解析】
把x=3代入方程x1+(m1﹣1)x﹣15=0得9+3m1﹣6﹣15=0,然后解关于m的方程即可.【详解】把x=3代入方程x1+(m1﹣1)x﹣15=0得9+3m1﹣6﹣15=0,解得m=±1.故选C.【点睛】本题考查了一元二次方程解的定义及一元二次方程的解法,正确得到关于m的方程是解决问题的关键.7、C【解析】
根据不等式的性质对选项进行逐一判断即可得到答案.【详解】解:A、因为a>b,c不知道是正负数或者是0,不能得到ac>bc,则A选项的不等式不成立;
B、因为a>b,则-2a<-2b,所以B选项的不等式不成立;
C、因为a>b,则-a<-b,所以C选项的不等式成立;
D、因为a>b,则a-2>b-2,所以D选项的不等式不成立.
故选C.【点睛】本题考查了不等式的性质,解题的关键是知道不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.8、D【解析】
根据多项式乘多项式的运算法则进行计算,确定出p、q的值即可求出答案.【详解】因为,所以,所以故答案选D.【点睛】本题考查的是多项式乘多项式的运算,能够准确计算解题的关键.9、B【解析】
先把方程的根解出来,然后分别让两个根作为腰长,再根据三角形三边关系判断是否能组成三角形,即可得出答案.【详解】解:∵腰长是方程的一个根,解方程得:∴腰长可以为4或者5;当腰长为4时,三角形边长为:4,4,8,∵,根据三角形三边长度关系:两边之和要大于第三边可得:4,4,8三条线段不能构成三角形,∴舍去;当腰长为5时,三角形边长为:5,5,8,经检验三条线段可以构成三角形;∴三角形的三边长为:5,5,8,周长为:18.故答案为B.【点睛】本题考查一元二次方程的解,以及三角形三边关系的验证,当涉及到等腰三角形的题目要进行分类讨论,讨论后一定不要忘记如果求得三角形的三边长,必须根据三角形三边关系再进行判断,看求得的三边长度是否能构成三角形.10、B【解析】分析:A、根据菱形的判定方法判断,B、根据正方形的判定方法判断,C、根据矩形的判定方法判断,D、根据菱形的判定方法判断.详解:A、菱形的判定定理,“一组邻边相等的平行四边形是菱形”,故A项正确;B、由正方形的判定定理,“对角线互相垂直且相等的平行四边形是正方形”可知,对角线仅相等的平行四边形是矩形,故B项错误;C、矩形的判定定理,“一个角是直角的平行四边形是矩形”,故C项正确;D、菱形的判定定理,“对角线互相垂直的平行四边形是菱形”,故D项正确。故选B.点睛:本题考查了矩形、菱形、正方形的判定方法,熟练掌握矩形、菱形、正方形的判定方法是解答本题的关键.11、B【解析】
解:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).12、C【解析】
根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.二、填空题(每题4分,共24分)13、1.【解析】试题分析:连接CM,根据三角形中位线定理得到NM=12CB,MN∥BC,又CD=13BD,可得MN=CD,又由MN∥BC,可得四边形DCMN是平行四边形,所以DN=CM,根据直角三角形的性质得到CM=考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.14、x<﹣1【解析】
首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【详解】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为:x<﹣1.【点睛】本题考查一次函数与一元一次不等式,关键是求出A点坐标.15、6【解析】
连接BD,证明△ECA≌△DCB,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.【详解】连接BD,∵△ACB和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ECD=∠ACB=90°,∴∠EDC=∠E=45°,∠ECA=∠DCB,在△ACE和△BCD中,,∴△ECA≌△BDC,∴DB=AE=4,∠BDC=∠E=45°,∴∠ADB=∠EDC+∠BDC=90°,∴AD=,故答案为6.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.16、2或.【解析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【详解】解:E是BC的中点,BE=CE=BC=12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CE-CQ=6-2tt=6-2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CQ-CE=2t-6,t=2t-6,解得:t=6(舍),③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,则AP=4-(t-4)=8-t,EQ=2t-6,8-t=2t-6,,当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.故答案为:2或.【点睛】本题主要考查平行四边形的性质及解一元一次方程.17、14cm或16cm【解析】试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为14cm或16cm.考点:平行四边形的性质.18、【解析】
由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.【详解】解:如图,作CG⊥CP交DF的延长线于G.则∠PCF+∠GCF=∠PCG=90°,∵四边形ABCD是边长为2的正方形,∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,∵E、F分别为CD、BC中点,∴DE=CE=CF=BF=1,∴AE=DF=,∴DP==,∴PE=,PF=,在△ADE和△DCF中:∴△ADE≌△DCF(SAS),∴∠AED=∠DFC,∴∠CEP=∠CFG,∵∠ECP+∠PCF=∠DCB=90°,∴∠ECP=∠FCG,在△ECP和△FCG中:∴△ECP≌△FCG(ASA),∴CP=CG,EP=FG,∴△PCG为等腰直角三角形,∴PG=PF+FG=PF+PE==CP,∴CP=.故答案为:.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共78分)19、(1)8;(2);(3)3.【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;
(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.【详解】解:(1)∵四边形BEFH为平行四边形
∴BE=HF,BH=EF
∵四边形EFGC,四边形ABCD都是正方形
∴EF=EC,BC=CD=4=AD
∴BH=EC,且BC=CD
∴Rt△BHC≌Rt△CED(HL)
∴CH=DE
∵H为CD中点,
∴CH=2=DE
∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°
∴Rt△ABE≌Rt△DCE(SAS)
∴BE=EC
∴BE=EF=HF=BH=EC
∵CH=2,BC=4
∴BH===2
∴四边形BEFH的周长=BE+BH+EF+FH=8;
(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点M,
∵AE=1,
∴DE=3
∵∠FEM+∠CEM=90°,∠CEM+∠ECD=90°
∴∠FEM=∠ECD,且CE=EF,∠EDC=∠EMF=90°
∴△EFM≌△CED(AAS)
∴CD=EM=4,DE=FM=3,
∴DM=1,
∴S△EFH=S△EFD+S△EDH+S△DHF=×3×3+×3×2+×2×1=;
(3)如图3,过点F作FN⊥CD的延长线于点N,
由(2)可知:△EFM≌△CED
∴CD=EM,DE=FM,
∴CD=AD=EM,
∴AE=DM,
设AE=x=DM,则DE=4-x=FM,
∵FN⊥CD,FM⊥AD,ND⊥AD
∴四边形FNDM是矩形
∴FN=DM=x,FM=DN=4-x
∴NH=4-x+2=6-x
在Rt△NFH中,HF===
∴当x=3时,HF有最小值==3.故答案为:(1)8;(2);(3)3.【点睛】本题是四边形综合题,考查正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,二次函数的性质,添加恰当辅助线构造全等三角形是题的关键.20、(1)详见解析;(2)详见解析.【解析】
(1)连接,交于点,连接并延长交于点F,证出EO为△ABC的中位线即可得出结论;(2)连接,连接交于点,连接,根据菱形的对称性可得:CP=AP,此时AP+PE=CP+PE=CE,根据两点之间线段最短,此时AP+PE最小.【详解】解:(1)连接,交于点,连接并延长交于点F,∵四边形ABCD为菱形∴点O为AC的中点∵点E为AB的中点∴EO为△ABC的中位线∴EO∥BC如下图所示:即为所求.(2)连接,连接交于点,连接,根据菱形的对称性可得:CP=AP,∴此时AP+PE=CP+PE=CE,根据两点之间线段最短,此时AP+PE最小,且最小值即为CE的长如图所示:点即为所求.【点睛】此题考查的是作图题,掌握菱形的性质、中位线的性质和两点之间线段最短是解决此题的关键.21、.【解析】
过点C作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt△ACD中,根据三角函数可求AD,BD的长;在Rt△BCD中,根据勾股定理可求BC的长.【详解】解:过点作,垂足为∵∴在Rt中∴在Rt中【点睛】本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.22、(1)20%;(2)8.64万台.【解析】试题分析:(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2,解方程即可得到所求答案;(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.试题解析:(1)设该厂今年产量的月平均增长率是x,根据题意得:5(1+x)2﹣5(1+x)=1.2解得:x=﹣1.2(舍去),x=0.2=20%.答:该厂今年的产量的月增长率为20%;(2)7月份的产量为:5(1+20%)3=8.64(万台).答:预计7月份的产量为8.64万台.23、(1)当选择方案①时,y=144x+2800;当选择方案②时,y=204x+2380;(2)故当0<x<7时,选择方案②;当x=7时,两种方案费用一样;当x>7时,选择方案①【解析】
(1)根据题意分别列出两种方案的收费方案的函数关系式;(2)由(1)找到临界点分类讨论即可.【详解】(1)当选择方案①时,y=350×8+0.6×240x=144x+2800当选择方案②时,y=(350×8+240)x×0.85=204x+2380(2)当方案①费用高于方案②时144x+2800>204x+2380解得x<7当方案①费用等于方案②时144x+2800=204x+2380解得x=7当方案①费用低于方案②时144x+2800<204x+2380解得x>7故当0<x<7时,选择方案②当x=7时,两种方案费用一样.当x>7时,选择方案①【点睛】本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.24、(1);(2)5;(3)PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.【解析】
(1)直接利用两点之间距离公式直接求出即可;
(2)根据题意列式计算即可;
(3)利用轴对称求最短路线方法得出P点位置,进而求出PA+PB的最小值.【详解】(1)(1)∵A(2,3),B(-1,-2),
∴A,B两点间的距离为:;(2)∵M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,
则M,N两点间的距离为3-(-2)=5;(3)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 党政机关公文写作常识培训
- 培训机构大客户管理
- 特殊教育工作规划
- 职业生涯规划教科书
- 机器人专业职业规划总结
- 一年级下册语文第一课教学课件教学
- 防治职业病的危害
- 严重精神障碍患者随访服务记录表
- 资质认定现场评审培训
- 浙江省温州市环大罗山联盟2024-2025学年高二上学期期中联考数学试题 含解析
- 2024-2030全球及中国MRAM行业市场发展分析及前景趋势与投资发展研究报告
- 旅游概论-第一章(一)
- 金融数据分析 课件 欧阳资生 第6-12章 有效市场假说与事件分析法 -文本数据分析
- 《冰雪奇缘》音乐赏析
- 金字塔原理(解决问题的逻辑)
- 数据驱动的环境政策分析方法及应用
- 车祸伤病人护理查房
- 软件采购计划书
- 辽宁省名校联盟2023-2024学年高二上学期12月月考化学试题(解析版)
- 术后尿潴留预防和护理课件
- 2024年家庭教育指导师考试(重点)题库及答案(含各题型)
评论
0/150
提交评论