版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省汕头市潮南区两英镇八年级数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.2.下列平面图形中,既是轴对称图形又是中心对称图形的是(
)A. B. C. D.3.已知二次函数(为常数)的图象与轴的一个交点为,则关于的一元二次方程的两实数根是()A., B., C., D.,4.一次函数y=kx+b(k<0,b>0)的图象可能是(
)A.
B.
C.
D.5.若关于的一次函数,随的增大而减小,且关于的不等式组无解,则符合条件的所有整数的值之和是()A. B. C.0 D.16.数据3,7,2,6,6的中位数是()A.6 B.7 C.2 D.37.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.8.计算的结果是()A.2 B. C. D.-29.下列事件中,是必然事件的是()A.在同一年出生的13名学生中,至少有2人出生在同一个月B.买一张电影票,座位号是偶数号C.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来D.在标准大气压下,温度低于0℃时冰融化10.下列说法不能判断是正方形的是()A.对角线互相垂直且相等的平行四边形 B.对角线互相垂直的矩形C.对角线相等的菱形 D.对角线互相垂直平分的四边形二、填空题(每小题3分,共24分)11.将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________12.若一元二次方程有两个不相同的实数根,则实数的取值范围________.13.如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.15.如图,在平行四边形ABCD中,,,垂足分别为E、F,,,,则平行四边形ABCD的面积为_________.16.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.17.如图,在中,按如下步骤操作:①以点为圆心,长为半径画弧交于点;②再分别以点、为圆心,大于的长为半径画弧,两弧交于一点;③连接并延长交于点,连接.若,,则的长为______.18.在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值_____.三、解答题(共66分)19.(10分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.(1)求证:四边形是矩形;(2)求四边形的周长.20.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.21.(6分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,(1)写出y甲,y乙与x的函数关系式.(2)学生人数在什么情况下,选择哪个旅行社合算?22.(8分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.求证:.23.(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求与的函数关系式,并写出的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.24.(8分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.(1)如图①,求证:EF//AC;(2)如图②,EF与边CD交于点G,连接BG,BE,①求证:△BAE≌△BCG;②若BE=EG=4,求△BAE的面积.25.(10分)解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.26.(10分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.(1)求证:OE=OF;(2)连接BE,DF,求证:BE=DF.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据二次根式的被开方数是非负数解题.【详解】解:依题意,得
a-1≥0,
解得,a≥1.
故选:B.【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,也是中心对称图形;C和D是轴对称图形,不是中心对称图形.故选B.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3、B【解析】
先求出二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x轴的另一个交点坐标,最后根据二次函数与x轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:二次函数图象的对称轴为直线x=∵图象与轴的一个交点为,∴图象与x轴的另一个交点坐标为(2,0)∴关于的一元二次方程的两实数根是,故选B【点睛】此题考查的是求二次函数图象与x轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.4、C【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、C【解析】
根据一次函数的性质,若y随x的增大而减小,则比例系数小于0,求出k<2,再根据不等式组无解可求出k≥−1,得到符合条件的所有整数k的值,再求和即可.【详解】解:∵y=(k−2)x+3的函数值y随x的增大而减小,∴k−2<0,可得:k<2,解不等式组,可得:,∵不等式组无解,∴k≥−1,所以符合条件的所有整数k的值是:−1,0,1,其和为0;故选:C.【点睛】本题考查了解一元一次不等式组及一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6、A【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据小到大排列2,3,6,6,7,所以中位数为6,故选A.【点睛】本题考查了中位数,正确理解中位数的意义是解题的关键.7、A【解析】
首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.8、A【解析】
根据分式的混合运算法则进行计算即可得出正确选项。【详解】解:=2故选:A【点睛】本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.9、A【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A.在同一年出生的13名学生中,至少有2人出生在同一个月,属于必然事件;B.买一张电影票,座位号是偶数号,属于随机事件;C.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来,属于随机事件;D.在标准大气压下,温度低于0℃时冰融化,属于不可能事件;故选:A.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、D【解析】
正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.【详解】A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D【点睛】本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件二、填空题(每小题3分,共24分)11、【解析】
根据图象平移的规律,左加右减,上加下减,即可得到答案.【详解】解:由题意得,y=-2x+4=-2(x+2)+4,即y=-2x,故答案为:y=-2x.【点睛】本题主要考查了一次函数图象与几何变换,掌握一次函数图象是解题的关键.12、且【解析】
利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m>1,
解得m<1且m≠1.故答案为:m<1且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.13、6【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】∵四边形ADCE是平行四边形,
∴OD=OE,OA=OC.
∴当OD取最小值时,DE线段最短,此时OD⊥BC.
∴OD是△ABC的中位线,∴,,∴,∵在Rt△ABC中,∠B=90°,
,,∴,∴.故答案为:6.【点睛】本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.14、±1【解析】试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,解得a=1或a=-1,即a的值为±1.考点:1.三角形的面积;2.坐标与图形性质.15、【解析】
利用已知条件及直角三角形中角所对直角边是斜边的一半即可求出BC、AB的长,在中,利用勾股定理可求出BE的长,以DC为底,BE为高求其面积即可.【详解】解:四边形ABCD是平行四边形同理可得在中,又故答案为:【点睛】本题考查了平行四边形的性质、直角三角形中角所对直角边是斜边的一半及勾股定理的综合运用,灵活运用直角三角形的性质确定线段长度是解题的关键.16、(-1,-1)【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【详解】菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),故答案为:(-1,-1).【点睛】本题考查了旋转的性质,利用旋转的性质是解题关键.17、8【解析】
根据菱形的判定与性质及角平分线的特点即可求解.【详解】依题意可知AE平方∠BAD,∵四边形ABCD为平行四边形,∴为菱形,∴AE⊥BF,∵,∴OB=3,又,∴AO=∴AE=2AO=8【点睛】此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知角平分线的性质与菱形的判定与性质定理.18、k<3【解析】
试题解析:∵一次函数中y随x的增大而减小,∴解得,故答案是:k【详解】请在此输入详解!三、解答题(共66分)19、(1)见详解;(2)【解析】
(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.【详解】(1)证明:∵AE∥BC,DE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,∴AD=.∴四边形AEBD的周长=.【点睛】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.20、4小时.【解析】
本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.21、(1)y甲、y乙与x的函数关系式分别为:y甲=700x+2000,y乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.【解析】
(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;(2)根据题意知:y甲<y乙时,可以确定学生人数,选择甲旅行社更省钱.【详解】试题解析:(1)由题意得:=2000+1000×0.7x=700x+2000,=2000×0.8+1000×0.8x=800x+1600;(2)当<时,即:700x+2000<800x+1600解得:x>4,当>时,即:700x+2000>800x+1600解得:x<4,当=时,即:700x+2000=800x+1600解得:x=4,答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.考点:一次函数的应用.22、证明见解析【解析】
根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:,在和中,由,可判定≌,根据全等三角形的性质可得:.【详解】证明:于F点,于G点,,四边形ABCD是正方形,,,又,,在和中,,≌,,【点睛】本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.23、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设,将点(10,200)、(15,150)分别代入,则,解得,∴,∵蜜柚销售不会亏本,∴,又,∴,∴,∴;(2)设利润为元,则==,∴当时,最大为1210,∴定价为19元时,利润最大,最大利润是1210元;(3)当时,,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.24、(1)见解析;(1)①见解析;②△BAE的面积为1.【解析】
(1)利用平行四边形的判定及其性质定理即可解决问题;(1)①根据SAS可以证明两三角形全等;②先根据等腰直角△DEG计算DE的长,设AE=a,表示正方形的边长,根据勾股定理列式,可得+a=4,最后根据三角形面积公式,整体代入可得结论.【详解】(1)证明:∵正方形ABCD∴AE//CF,∵AE=CF∴AEFC是平行四边形∴EF//AC.(1)①如图,∵四边形ABCD是正方形,且EF∥AC,∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;∵AD∥BF,∴∠CFG=∠DEG=45°,∵∠CGF=∠DGE=45°,∴∠CGF=∠CFG,∴CG=CF;∵AE=CF,∴AE=CG;在△ABE与△CBG中,∵AE=CG,∠BAE=∠BCG,AB=BC∴△ABE≌CBG(SAS);②由①知△DEG是等腰直角三角形,∵EG=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度人力资源管理服务合同
- 2024年度农业机械化服务与合作合同
- 2024年度企业解散与清算合同
- 混凝土铺路机市场发展现状调查及供需格局分析预测报告
- 2024年度人力资源服务与雇佣合同
- 熏香市场发展预测和趋势分析
- 2024年度北京市小客车租赁指标合同
- 2024年度不锈钢栏杆出口贸易与运输合同
- 2024年度人工智能语音助手技术开发许可合同
- 2024年度物流运输合同:彩钢房材料与设备运输
- 【3-5分钟微电影剧本青春】微电影剧本《青春不褪色》
- 生字本A4打印(田格+拼音)
- 第八章气隙磁导的计算经典实用
- 两曲面立体相贯PPT课件
- (最新整理)液化气体汽车罐车安全监察规程
- (完整word版)建龙方案报审表
- (化工)地埋管道施工方案
- 小学语文大单元主题阅读教学例谈
- The Study of Administration(原版行政学研究)
- 棋王:传统文化的审美符号 ——王一生形象探析毕业论文
- POSP概要设计说明书V31(参考)
评论
0/150
提交评论