泰兴市济川中学2024年数学八年级下册期末复习检测试题含解析_第1页
泰兴市济川中学2024年数学八年级下册期末复习检测试题含解析_第2页
泰兴市济川中学2024年数学八年级下册期末复习检测试题含解析_第3页
泰兴市济川中学2024年数学八年级下册期末复习检测试题含解析_第4页
泰兴市济川中学2024年数学八年级下册期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泰兴市济川中学2024年数学八年级下册期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在边长为的正方形中,点为对角线上一动点,于于,则的最小值为()A. B. C. D.2.在下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3.如图,在四边形ABCD中,AB=BC=2,且∠B=∠D=90°,连接AC,那么四边形ABCD的最大面积是()A.2 B.4 C.4 D.84.如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.85.如图所示,在直角中,,,,是边的垂直平分线,垂足为,交边于点,连接,则的周长为()A.16 B.15 C.14 D.136.已知关于x的函数y=k(x-1)和y=(k≠0),它们在同一坐标系内的图象大致是()A. B. C. D.7.要使分式有意义,x应满足的条件是()A. B. C. D.8.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下 B.对称轴是y轴C.经过原点 D.在对称轴右侧部分是下降的9.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t10.下列运算不正确的是()A.×= B.÷= C.+= D.(﹣)2=2二、填空题(每小题3分,共24分)11.如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________12.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.13.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为__.14.甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.15.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.16.若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.17.一次函数y=2x-4的图像与x轴的交点坐标为_______.18.的非负整数解为______.三、解答题(共66分)19.(10分)某高速公路要对承建的工程进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计:若甲、乙两队合作,24天可以完成;若由甲队单独做20天后,余下的工程由乙队做,还需40天完成,求甲、乙两队单独完成这项工程各需多少天?20.(6分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.八(1)班学生身高统计表组别身高(单位:米)人数第一组1.85以上1第二组第三组19第四组第五组1.55以下8(1)求出统计表和统计图缺的数据.(2)八(1)班学生身高这组数据的中位数落在第几组?(3)如果现在八(1)班学生的平均身高是1.63,已确定新学期班级转来两名新同学,新同学的身高分别是1.54和1.77,那么这组新数据的中位数落在第几组?21.(6分)(1)计算:(2)已知,求代数式的值。22.(8分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.23.(8分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.24.(8分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.(1)求证:△ABE≌△CDF;(2)若AB=6,BC=8,求DE的长.25.(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(10分)(1)因式分解:;(2)解分式方程:;(3)解不等式组:;

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由正方形的性质得BC=CD=4,∠C=90°,∠CBD=∠CDB=45°,再证出四边形四边形MECF是矩形,得出CE=MF=DF,即当点M为BD的中点时EF的值最小.【详解】在边长为4cm的正方形ABCD中,BC=CD=4∠C=90°,∠CBD=∠CDB=45°于于F∠MEC=∠MFC=∠MFD=90°四边形MECF是矩形,△MDF为等腰三角形CE=MF=DF设DF=x,则CE=xCF=CD-DF=4-x在RT△CEF中,由勾股定理得==,当且仅当x-2=0时,即x=2时,有最小值0当且仅当x-2=0时,即x=2时,有最小值故选B。【点睛】本题考查正方形的性质,找好点M的位置是解题关键.2、C【解析】试题分析:根据轴对称图形与中心对称图形的概念可判断出只有C选项符合要求.故选C.考点:1.中心对称图形;2.轴对称图形.3、B【解析】

等腰直角三角形△ABC的面积一定,要使四边形ABCD的面积最大,只要△ACD面积最大即可,当点D在AC的中垂线上时,△ACD面积最大,此时ABCD是正方形,即可求出面积,做出选择即可.【详解】解:∵∠B=90°,AB=BC=2,∵△ABC是等腰直角三角形,要使四边形ABCD的面积最大,只要△ACD面积最大即可,当点D在AC的中垂线上时,△ACD面积最大,此时ABCD是正方形,面积为2×2=4,故选:B.【点睛】此题考查正方形的性质,直角三角形的性质,线段的中垂线的性质,何时面积最大是正确解题的关键.4、C【解析】

由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=1,则可求得AD的长,可求得答案.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=1,AD∥BC,AD=BC,∴∠DEC=∠BCE.∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=1.∵AE=3,∴AD=BC=3+1=2.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.5、A【解析】

首先连接AE,由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,又由DE是AB边的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,继而可得△ACE的周长为:BC+AC.【详解】连接AE,∵在Rt△ABC中,∠BAC=90∘,AB=8,AC=6,∴BC=∵DE是AB边的垂直平分线,∴AE=BE,∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16,故选A.【点睛】本题考查勾股定理,熟练掌握勾股定理的性质是解题关键.6、A【解析】若k>0时,反比例函数图象经过二四象限;一次函数图象经过一三四象限;若k<0时,反比例函数经过一三象限;一次函数经过二三四象限;由此可得只有选项A正确,故选A.7、D【解析】

直接利用分式有意义的条件,即分母不等于0,进而得出答案.【详解】解:要使分式有意义,x应满足的条件是:x-1≠0,

解得:x≠1.

故选:D.【点睛】本题考查分式有意义的条件,正确把握分式有意义的条件是解题关键.8、C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确,故选C.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0),对称轴直线x=-,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.9、B【解析】

根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.10、C【解析】分析:根据二次根式的相关运算法则进行计算判断即可.详解:A选项中,因为,所以A中计算正确;B选项中,因为,所以B中计算正确;C选项中,因为中,两个项不能合并,所以C中计算错误;D选项中,因为,所以D中计算正确.故选C.点睛:熟记“二次根式相关运算的运算法则”是正确解答本题的关键.二、填空题(每小题3分,共24分)11、6【解析】分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行

,

AB

CD,AD

BC

,∴

四边形

ABCD

是平行四边形,∵

两张纸条的宽度都是

3

,∴S四边形ABCD=AB×3=BC×3

,∴AB=BC

,∴

平行四边形

ABCD

是菱形,即四边形

ABCD

是菱形.如图

,

A

AE⊥BC,

垂足为

E,

∵∠ABC=60∘

,∴∠BAE=90°−60°=30°,∴AB=2BE

,在

△ABE

,AB2=BE2+AE2

,即

AB2=AB2+32

,解得

AB=,∴S四边形ABCD=BC⋅AE=×3=.故答案是:.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.12、3【解析】

根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.13、【解析】在菱形中,,设14、甲【解析】

根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、【解析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB中,CE2=BE2+BC2,∴(4-x)2=x2+22,∴x=,CF=.S着色部分=S矩形ABCD-S△ECF=4×2-××2=16、20:15:1.【解析】

根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.【详解】解:设三角形的三边分别为3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴这个三角形是直角三角形,设斜边上的高为h,则×3x×4x=×5x×h,解得,h=,则这个三角形的三边上的高之比=4x:3x:=20:15:1,故答案为:20:15:1.【点睛】本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.17、(2,1)【解析】

把y=1代入y=2x+4求出x的值,即可得出答案.【详解】把y=1代入y=2x-4得:1=2x-4,

x=2,

即一次函数y=2x-4与x轴的交点坐标是(2,1).

故答案是:(2,1).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是1.18、0,1,2【解析】

先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.【详解】解:移项得:,合并同类项,得,不等式两边同时除以-7,得,所以符合条件的非负整数解是0,1,2.【点睛】本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.三、解答题(共66分)19、甲队独做需30天,乙队独做需120天【解析】

设甲队独做需a天,乙队独做需b天,根据题意可得两个等量关系为:甲工效×工作时间+乙工效×工作时间=1;甲工效×20+乙工效×40=1.列出方程组,再解即可.【详解】设甲队独做需a天,乙队独做需b天.建立方程组,解得.经检验a=30,b=120是原方程的解.答:甲队独做需30天,乙队独做需120天.【点睛】本题考查了分式方程(组)的应用.得到工作量1的等量关系是解题的关键.20、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.【解析】

(1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;

(2)根据中位数的概念求解可得;

(3)根据中位数的概念求解可得.【详解】解:(1)第一组人数为1,占被调查的人数百分比为2%,

∴被调查的人数为1÷2%=50(人),

则第二组人数为50×8%=4,第四组人数为50×36%=18(人),

第三组对应的百分比为×100%=38%,第五组的百分比为×100%=16%;

(2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;

(3)新学期班级转来两名新同学,此时共有52名同学,1.54在第五组,1.77在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,

所以新数据的中位数落在第四组.【点睛】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21、(1);(2)【解析】

(1)利用二次根式的性质化简,再合并同类项即可;(2)先对要求的式子进行配方,然后把x的值代入计算即可.【详解】(1)原式==(2)当时,====【点睛】本题考查了二次根式的化简求值,掌握混合运算的步骤和配方法的步骤是解题的关键.22、(1)修建的两块矩形绿地的面积共为144平方米,(2)人行通道的宽度为1米.【解析】

根据题意得:两块矩形绿地的长为米,宽为米,可求得面积;设人行通道的宽度为x米,则两块矩形绿地的长为米,宽为米,根据题意得:,解方程可得.【详解】解:根据题意得:两块矩形绿地的长为米,宽为米,面积为米,答:修建的两块矩形绿地的面积共为144平方米,设人行通道的宽度为x米,则两块矩形绿地的长为米,宽为米,根据题意得:,解得:舍去,,答:人行通道的宽度为1米.【点睛】本题考核知识点:一元二次方程应用.解题关键点:根据题意列出方程.23、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.【解析】试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).故答案为10;2.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.24、(1)证明见解析(2)2【解析】(1)首先由平行四边形的性质可得AD∥BC,AB=CD;∠A=∠C,再由条件利用SAS定理可判定△ABE≌△CDF;(2)由(1)可知∠EBF=∠AEB由平行线的性质和角平分线得出∠AEB=∠ABE,即可得出结果.解:(1)证明:法一:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC,∠A=∠C,,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD-DE=BC-BF,即:AE=CF,∴△ABE≌△CDF(SAS).法二:∵BE//FD∴∠EBF=∠DFC∵AD//BC∴∠EBF=∠AEB∴∠AEB=∠DFC在▱ABCD中,∵∠A=∠C,AB=CD∴△ABE≌△CDF(2)由(1)可知∠EBF=∠AEB又∵BE平分∠EBF∴∠EBF=∠ABE∴∠AEB=∠ABE∴AE=AB=6又∵BC=AD=8∴DE=2“点睛”本题考查了平行四边形的判定与性质、等腰三角形的判定;熟记平行四边形的性质,证出AE=AB是解决(2)的关键.25、(1)详见解析;(2)当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=1时,△DEF是直角三角形(∠DEF=90°).【解析】

(1)在Rt△ABC中,根据已知条件求得∠C=30°,由题意可知CD=4tcm,AE=2tcm;在直角△CDF中,根据30°角直角三角形的性质可得DF=CD=2tcm,由此即可证得DF=AE;(2)由DF∥AB,DF=AE,根据一组对边平行且相等的四边形是平行四边形可得四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即可得60﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论