版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市126中学2024年八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234...水池中水量(m)38363432...下列结论中正确的是A.y随t的增加而增大 B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3 D.y与t之间的关系式为y=38-2t2.用正三角形和正方形镶嵌一个平面,在同一个顶点处,正三角形和正方形的个数之比为()A.1:1 B.1:2 C.2:3 D.3:23.函数中,自变量x的取值范围是()A.x>1 B.x<1 C. D.4.鞋子的“鞋码”和鞋长存在一种换算关系,下表是几组鞋长与“鞋码”换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码).设鞋长x,“鞋码”为y,试判断点在下列哪个函数的图象上()鞋长16192123鞋码(码)22283236A. B.C. D.5.不等式组的最小整数解是()A.0 B.-1 C.1 D.26.能使分式的值为零的所有x的值是()A.x=1 B.x=﹣1 C.x=1或x=﹣1 D.x=2或x=17.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<08.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是(
)A.四边形ABCD由矩形变为平行四边形
B.BD的长度增大C.四边形ABCD的面积不变 D.四边形ABCD的周长不变9.把多项式4a2b+4ab2+b3因式分解正确的是()A.a(2a+b)2 B.b(2a+b)2 C.(a+2b)2 D.4b(a+b)210.正方形ABCD的边长为2,以AD为边作等边△ADE,则点E到BC的距离是()A.2+ B.2- C.2+,2- D.4-二、填空题(每小题3分,共24分)11.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。12.关于的方程有两个整数根,则整数____________.13.如图,已知菱形的面积为24,正方形的面积为18,则菱形的边长是__________.14.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、4,则原直角三角形纸片的斜边长是.15.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为______(请将所有正确的序号都填上).17.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.18.直线y=2x+6经过点(0,a),则a=_____.三、解答题(共66分)19.(10分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k的取值范围.20.(6分)如图,在平行四边形的对角线上存在,两个点,且,试探究与的关系.21.(6分)(1)计算:﹣×(2)解方程:x2﹣4x﹣5=022.(8分)如图,▱ABOC放置在直角坐标系中,点A(10,4),点B(6,0),反比例函数y=(x>0)的图象经过点C.(1)求该反比例函数的表达式.(2)记AB的中点为D,请判断点D是否在该反比例函数的图象上,并说明理由.(3)若P(a,b)是反比例函数y=的图象(x>0)的一点,且S△POC<S△DOC,则a的取值范围为_____.23.(8分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.24.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;(2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.25.(10分)如图,在△ABC中,AC=BC,∠C=90°,D是BC上的一点,且BD=CD.(1)尺规作图:过点D作AB的垂线,交AB于点F;(2)连接AD,求证:AD是△ABC的角平分线.26.(10分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.(1)求证:CM⊥EF.(2)设正方形ABCD的边长为2,若五边形BCDEF的面积为,请直接写出CM的长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据表格内的数据,利用待定系数法求出y与t之间的函数关系式,由此可得出D选项错误;由-2<0可得出y随t的增大而减小,A选项错误;代入t=15求出y值,由此可得出:放水时间为15分钟时,水池中水量为10m3,B选项错误;由k=-2可得出每分钟的放水量是2m3,C选项正确.综上即可得出结论.【详解】解:设y与t之间的函数关系式为y=kt+b,
将(1,38)、(2,36)代入y=kt+b,,解得:∴y与t之间的函数关系式为y=-2t+40,D选项错误;
∵-2<0,
∴y随t的增大而减小,A选项错误;
当t=15时,y=-2×15+40=10,
∴放水时间为15分钟时,水池中水量为10m3,B选项错误;
∵k=-2,
∴每分钟的放水量是2m3,C选项正确.
故选:C.【点睛】本题考查一次函数的应用,利用待定系数法求出函数关系式是解题的关键.2、D【解析】
分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【详解】解:正三角形的每个内角是,正方形的每个内角是,,用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.正三角形和正方形的个数之比为,故选.【点睛】本题考查平面密铺的知识,比较简单,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3、C【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.故选C.4、B【解析】
设一次函数y=kx+b,把两个点的坐标代入,利用方程组即可求解.【详解】解:设一次函数y=kx+b,把(16,22)、(19,28)代入得;解得,∴y=2x-10;
故选:B.【点睛】此题考查一次函数的实际运用,利用待定系数法求函数解析式的问题.5、A【解析】
解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A6、B【解析】分析:根据分式的值为0的条件:分子等于0,分母≠0,构成不等式组求解即可.详解:由题意可知:解得x=-1.故选B.点睛:此题主要考查了分式的值为0的条件,利用分式的值为0的条件:分子等于0,分母≠0,构造不等式组求解是解题关键.7、D【解析】
∵A,B是不同象限的点,而正比例函数的图象要不在一、三象限,要不在二、四象限,∴由点A与点B的横纵坐标可以知:点A与点B在一、三象限时:横纵坐标的符号应一致,显然不可能;点A与点B在二、四象限:点B在二象限得n<0,点A在四象限得m<0.故选D.8、C【解析】试题分析:由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.9、B【解析】
先提公因式,再利用完全平方公式因式分解.【详解】4a2b+4ab2+b3=b(4a2+4ab+b2)=b(2a+b)2,故选B.【点睛】本题考查的是因式分解,掌握提公因式法、完全平方公式是解题的关键.10、C【解析】
由等边三角形的性质可得点E到AD上的距离为,分两种情况可求点E到BC的距离.【详解】解:∵等边△ADE的边长为2∴点E到AD上的距离EG为,当△ADE在正方形外面,∴点E到BC的距离=2+当△ADE在正方形里面∴点E到BC的距离=2-故选:C.【点睛】本题考查了正方形的性质,等边三角形的性质,熟练运用正方形的性质是本题的关键.二、填空题(每小题3分,共24分)11、36【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线12、【解析】
先计算判别式得到∆=,根据方程有两个整数根确定∆必为完全平方数,由此得到整数k的值.【详解】由题意得∆=,∵方程有两个整数根,∴∆必为完全平方数,而k是整数,∴k-8=0,∴k=8,故答案为:8.【点睛】此题考查一元二次方程的根的判别式,完全平方公式,正确理解题意是解题的关键.13、1【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:如图,连接AC、BD,相交于点O,∵正方形AECF的面积为18,∴AC=,∴AO=3,∵菱形ABCD的面积为24,∴BD=,∴BO=4,∴在Rt△AOB中,.故答案为:1.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.14、2或10.【解析】试题分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.试题解析:①如图:因为CD=,点D是斜边AB的中点,所以AB=2CD=2,②如图:因为CE=点E是斜边AB的中点,所以AB=2CE=10,综上所述,原直角三角形纸片的斜边长是2或10.考点:1.勾股定理;2.直角三角形斜边上的中线;3.直角梯形.15、(-1,-1)【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【详解】菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),故答案为:(-1,-1).【点睛】本题考查了旋转的性质,利用旋转的性质是解题关键.16、①③④【解析】
根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【详解】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为①③④.考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.17、15°【解析】
根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.【详解】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.∴∠EDC=70°-55°=15°.故答案为:15°.【点睛】本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.18、6【解析】
直接将点(0,a)代入直线y=2x+6,即可得出a=6.【详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.【点睛】此题主要考查一次函数解析式的性质,熟练掌握即可得解.三、解答题(共66分)19、(3)证明见解析;(2)3<k<2.【解析】
(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.【详解】(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:解得
x3=k-3,x2=2,∵此方程有一个根大于3且小于3,而x2>3,∴3<x3<3,即3<k-3<3.∴3<k<2,即k的取值范围为:3<k<2.【点睛】本题考查了根的判别式,解题的关键是:(3)牢记“当时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.20、见解析.【解析】
由,得到BQ=DP,再根据平行四边形性质可得AD=BC,AD∥BC,可证△ADP≌△CBQ(SAS),即可得:AP=CQ,∠APD=∠CQB.可得∠APB=∠DQC,结论可证.【详解】解:AP=CQ,AP∥CQ;理由:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC
∴∠ADP=∠CBQ,
∵BP=DQ,∴DP=BQ
∴△ADP≌△CBQ(SAS),
∴AP=CQ,∠APD=∠CQB.
∵∠APB=180°-∠APD,∠DQC=180°-∠CQB
∴∠APB=∠DQC
∴AP∥CQ.∴AP=CQ,AP∥CQ【点睛】本题考查了平行四边形的性质和全等三角形的判定和性质,能利用平行四边形找到证明全等的条件是解答此题的关键.21、(1);(2)x=﹣1或x=1.【解析】
先化简二次根式、计算乘法,再合并即可得;
利用因式分解法求解可得.【详解】解:(1)原式=2﹣=2﹣=;(2)∵x2﹣4x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得:x=﹣1或x=1.【点睛】此题考查解一元二次方程的方法与二次根式的混合运算,根据方程的特点,灵活选用适当的方法求得方程的解即可.22、(1)y=;(2)D点在反比例函数图象上;(3)2<a<4或4<a<8【解析】
根据题意可得,可得C点坐标,则可求反比例函数解析式
根据题意可得D点坐标,代入解析式可得结论.
由图象可发现,,的面积和等于▱ABCD的面积一半,即,分点P在OC上方和下方讨论,设,用a表示的面积可得不等式,可求a的范围.【详解】解:(1)∵ABOC是平行四边形∴AC=BO=6∴C(4,4)∵反比例函数y=(x>0)的图象经过点C.∴4=∴k=16∴反比例函数解析式y=(2)∵点A(10,4),点B(6,0),∴AB的中点D(8,2)当x=8时,y==2∴D点在反比例函数图象上.(3)根据题意当点P在OC的上方,作PF⊥y轴,CE⊥y轴设P(a,)S△COD=S▱ABOC﹣S△ACD﹣S△OBD∴S△COD=S▱ABOC=12∵S△POC<S△COD∴,∴a>2或a<﹣8(舍去)当点P在OC的下方,则易得4<a<8综上所述:2<a<4或4<a<8【点睛】本题考查了待定系数法解反比例函数解析式,反比例函数的系数的几何意义,平行四边形的性质,设,根据题意列出关于a的不等式是本题关键.23、(1)当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2;(2)旅客最多可免费携带行李10kg.【解析】
(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是时x的值.【详解】(1)根据题意,设与的函数表达式为y=kx+b当x=20时,y=2,得2=20k+b当x=50时,y=8,得8=50k+b.解方程组,得,所求函数表达式为y=x-2.(2)当y=0时,x-2=0,得x=10.答:旅客最多可免
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版国际金融风险管理合同范本3篇
- 二零二五版建筑工地劳务用工及社会保障服务合同范本3篇
- 二零二五年酒店客房协议价优惠合作合同3篇
- 2024政府采购合同环境与安全监督协议3篇
- 2025年新型城镇化项目水电设施安装施工合同3篇
- 二零二五版板房租赁与租赁期满资产评估与转让合同3篇
- 二零二五年度出租车司机服务规范与客户满意度提升合同3篇
- 二零二五年透水混凝土工程验收与评估合同2篇
- 二零二五年智能交通管理系统采购合同3篇
- 二零二五版房屋代理租赁资产评估合同3篇
- 盖洛普Q12解读和实施完整版
- 2023年Web前端技术试题
- GB/T 20840.8-2007互感器第8部分:电子式电流互感器
- GB/T 14864-2013实心聚乙烯绝缘柔软射频电缆
- 品牌策划与推广-项目5-品牌推广课件
- 信息学奥赛-计算机基础知识(完整版)资料
- 发烟硫酸(CAS:8014-95-7)理化性质及危险特性表
- 数字信号处理(课件)
- 公路自然灾害防治对策课件
- 耳鸣中医临床路径
- 安徽身份证号码前6位
评论
0/150
提交评论