




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省江阴市周庄中学八年级下册数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65° B.∠A:∠B:∠C=2:3:5C.a:b:c=:: D.a=6,b=10,c=122.某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周内大约花钱数额进行了统计,如下表:学生花钱数(元)
5
10
15
20
25
学生人数
7
12
18
10
3
根据这个统计表可知,该班学生一周花钱数额的众数、平均数是()A.15,14 B.18,14 C.25,12 D.15,123.下列各式中计算正确的是()A.=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.4.下列计算正确的是()A.=2 B. C. D.5.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.6.下列算式正确的()A.=1 B.=C.=x+y D.=7.两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等8.如图,E为▱ABCD外一点,且EB⊥BC于点B,ED⊥CD于点D,若∠E=50°,则∠A的度数为()A.135° B.125°C.130° D.35°9.下列图形,可以看作中心对称图形的是()A. B. C. D.10.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.A.5个 B.4个 C.3个 D.2个二、填空题(每小题3分,共24分)11.已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.12.有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______;这名选手的10次成绩的极差是______.13.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为_.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.15.已知菱形的边长为6cm,一个内角为60°,则菱形的面积为______cm1.16.对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.17.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.三、解答题(共66分)19.(10分)如图,,平分,交于点,平分,交于点,连接.求证:四边形是菱形.20.(6分)已知:四边形ABCD,E,F,G,H是各边的中点.(1)求证:四边形EFGH是平行四边形;(2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.21.(6分)如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:(1)分别计算甲、乙运动员射击环数;(2)分别计算甲、乙运动员射击成绩的方差;(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.22.(8分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.23.(8分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图中的值是.(2)补全图2的统计图.(3)求本次调查获取的样本数据的平均数、众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.24.(8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,样本容量为;(2)补全条形统计图;(3)“乘车”所对应的扇形圆心角为°;(4)若该学校共有2000名学生,试估计该学校学生中选择“步行”方式的人数.25.(10分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.(1)求点的坐标;(2)求一次函数和反比例函数的表达式.26.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据勾股定理的逆定理和三角形的内角和定理进行判定即可.【详解】解:A、∵∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.【点睛】本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.2、A【解析】
根据众数和平均数的定义求解.【详解】∵众数是数据中出现次数最多的数,∴该班学生一周花钱数额的众数为15;∵平均数是指在一组数据中所有数据之和再除以数据的个数,∴该班学生一周花钱数额的平均数=(5×7+10×12+15×18+20×10+25×3)÷50=1.故选A.【点睛】考点:1.众数;2.算术平均数.3、D【解析】
根据二次根式的意义、性质逐一判断即可得.【详解】A.、没有意义,此选项错误;B.a(a>0),此选项错误;C.5,此选项错误;D.,此选项正确.故选D.【点睛】本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质.4、C【解析】
根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】A.=4,故A选项错误;B.与不是同类二次根式,不能合并,故B选项错误;C.,故C选项正确;D.=,故D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.5、A【解析】A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.6、A【解析】
A、分子(-a+b)2=(a-b)2,再与分母约分即可;B、把分子和分母都除以-1得出结论;C、是最简分式;D、分子和分母同时扩大10倍,要注意分子和分母的每一项都要扩大10倍.【详解】A、==1,所以此选项正确;B、=≠,所以此选项错误;C、不能化简,是最简分式,所以此选项错误;D、=≠,所以此选项错误;故选:A.【点睛】本题考查了分式的化简,依据是分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;要注意以下几个问题:①当分子、分母的系数为分数或小数时,应运用分数的基本性质将分式的分子、分母中的系数化为整数,如选项D;②当分子或分母出现完全平方式时,要知道(a-b)2=(b-a)2,如选项A;③当分子和分母的首项系数为负时,通常会乘以-1,化为正数,要注意每一项都乘,不能漏项,如选项B;④因式分解是基础,熟练掌握因式分解,尤其是平方差公式和完全平方公式.7、D【解析】
根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.【详解】14(98+99+99+100)=99,14(98.5+99+99+99.5)=99,平均数相等,两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;14[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2]=12,14[(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)故选D.【点睛】本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.8、C【解析】
首先由四边形内角和定理求出∠C=130°,然后根据平行四边形对角相等可得答案.【详解】解:∵EB⊥BC,ED⊥CD,∠E=50°,∴∠EBC=90°,∠EDC=90°,∴在四边形EBCD中,∠C=360°-∠EBC-∠EDC-∠E=360°-90°-90°-50°=130°,∴在▱ABCD中∠A=∠C=130°,故选:C.【点睛】本题考查了四边形的内角和定理,平行四边形的性质,熟练掌握相关性质定理是解题关键.9、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】、不是中心对称图形,故本选项不符合题意;、是中心对称图形,故本选项符合题意;、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意.故选:.【点睛】本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解析】
根据中心对称的概念对各小题分析判断,然后利用排除法求解.【详解】(1)正方形绕中心旋转能与自身重合;(2)等边三角形不能绕某点旋转与自身重合;(3)矩形绕中心旋转能与自身重合;(4)直角不能绕某个点旋转能与自身重合;(5)平行四边形绕中心旋转能与自身重合;综上所述,绕某个点旋转能与自身重合的图形有(1)(3)(5)共3个.故选:.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转后两部分重合.二、填空题(每小题3分,共24分)11、19【解析】
先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.【详解】根据题意得,x-3=0,y-8=0,解得x=3,y=8,①3是腰长时,三角形的三边分别为3、3、8,∵3+3<8,∴不能组成三角形,②3是底边时,三角形的三边分别为3、8、8,能组成三角形,周长=3+8+8=19,所以,三角形的周长为19,故答案为:19.【点睛】本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,二次根式的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.12、小林,9环【解析】
根据折线统计图中小明与小林的飞镖命中的环数波动性大小以及极差的定义,即可得到答案.【详解】根据折线统计图,可知小林是新手,小林10次成绩的极差是10-1=9(环)故答案为:小林,9环.【点睛】本题主要考查折线统计图中数据的波动性与极差的定义,掌握极差的定义:一组数据中,最大数与最小数的差,是解题的关键.13、1.【解析】
先利用直角三角形斜边中线性质求出AB,在Rt△ABF中,利用直角三角形10度角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】解:∵AF⊥BC,∴∠AFB=90°,在Rt△ABF中,D是AB的中点,DF=1,∴AB=2DF=6,又∵E是AC的中点,∴DE∥BC,∵∠ADE=10°,∴∠ABF=∠ADE=10°,∴AF=AB=1,故答案为:1.【点睛】本题考查三角形中位线性质、含10度角的直角三角形性质、直角三角形斜边上的中线性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.14、22.5°【解析】
四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.15、18【解析】由题意可知菱形的较短的对角线与菱形的一组边组成一个等边三角形,根据勾股定理可求得另一条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可求得其面积.解:因为菱形的一个内角是110°,则相邻的内角为60°从而得到较短的对角线与菱形的一组邻边构成一个等边三角形,即较短的对角线为6cm,根据勾股定理可求得较长的对角线的长为6cm,则这个菱形的面积=×6×6=18cm1,故答案为18.16、m>1【解析】
根据图象的增减性来确定(m﹣1)的取值范围,从而求解.【详解】解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,∴m﹣1>2,解得,m>1.故答案是:m>1.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.17、1或1.【解析】
试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.18、(2,3)【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A、B的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.三、解答题(共66分)19、详见解析【解析】
由角平分线和平行线的性质先证出,,从而有,得到四边形是平行四边形,又因为,所以四边形是菱形.【详解】证明:∵平分,∴,∵,∴,∴,∴,同理.∴,∵,∴且,∴四边形是平行四边形,∵,∴四边形是菱形.【点睛】本题考查了菱形,熟练掌握菱形的判定方法是解题的关键.20、(1)见解析;(2)四边形EFGH是菱形,理由见解析【解析】
(1)根据三角形中位线定理可EF∥AC∥HG,HE∥BD∥GF,即可解答.(2)根据菱形是邻边相等的平行四边形,证明EF=AC=BD=EH,即可解答.【详解】(1)∵E,F,G,H是各边的中点,∴EF∥AC∥HG,HE∥BD∥GF,∴四边形EFGH是平行四边形;(2)四边形ABCD是一个矩形,四边形EFGH是菱形;∵四边形ABCD是矩形,∴AC=BD,∴EF=AC=BD=EH,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.【点睛】此题考查平行四边形的判定,菱形的判定,解题关键在于利用三角形中位线定理进行求证,掌握各判定定理.21、(1)8(环),8(环);(2)2.8,0.8;(3)选择甲,因为成绩呈上升趋势;选择乙,因为成绩稳定.【解析】
(1)由折线统计图得出甲、乙两人的具体成绩,利用平均数公式计算可得;(2)根据方差计算公式计算可得;(3)答案不唯一,可从方差的意义解答或从成绩上升趋势解答均可.【详解】(1)=×(6+6+9+9+10)=8(环),=×(9+7+8+7+9)=8(环);(2)=×[(6﹣8)2×2+(9﹣8)2×2+(10﹣8)2]=2.8,=×[(9﹣8)2×2+(7﹣8)2×2+(8﹣8)2]=0.8;(3)选择甲,因为成绩呈上升趋势;选择乙,因为成绩稳定.【点睛】本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及平均数、方差的计算公式.22、(1)平行四边形;(2)见解析【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.故答案为平行四边形;(2)证明:如图2中,连接,.∵,∴即,在和中,,∴,∴∵点,,分别为边,,的中点,∴,,由(1)可知,四边形是平行四边形,∴四边形是菱形.如图设与交于点.与交于点,与交于点.∵,∴,∵,∴∵,,∴,∵四边形是菱形,∴四边形是正方形.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.23、(1)、;(2)详见解析;(3)平均数:16;众数:10;中位数:15;(4)608.【解析】
(1)由元的人数及其所占百分比可得总人数,用元人数除以总人数可得m的值;(2)总人数乘以元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为元的学生人数.【详解】(1)本次接受随机抽样调查的学生人数为人.∵.故答案为、;(2)元的人数为,补全图形如下:(3)本次调查获取的样本数据的平均数是:(元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元;(4)估计该校本次活动捐款金额为元的学生人数为人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.24、(1)50;(2)图略;(3);(4)600.【解析】
(1)用此次调查的乘车的学生数除以其占比即可得到样本容量;(2)用调查的总人数减去各组人数即可得到步行的人数,即可补全统计图;(3)用360°×40%即可得到“乘车”所对应的扇形圆心角度数;(4)用2000乘以“步行”方式的占比即可.【详解】(1)样本容量为20÷40%=50(2)步行的人数为50-20-10-5=15(人)补全统计图如下:(3)“乘车
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大型文化演出活动方案
- 大班扫地活动方案
- 大学祭奠活动方案
- 外场美食活动方案
- 大型冲关项目活动方案
- 夏日员工活动方案
- 大学如何写活动方案
- 大型跑步活动方案
- 大学策划开学活动方案
- 太原超市活动方案
- 2025年湖南湘西州花垣县事业单位招聘工作人员71人历年高频重点提升(共500题)附带答案详解
- 2025年高中历史毕业会考全部基础知识复习提纲(完整版)
- 电商平台品牌授权使用协议
- 水泥土挤密桩的施工方案
- 急性粒-单核细胞白血病病因介绍
- 心外科手术进修汇报
- 集团公司资金池管理制度
- 瑶医瑶药文化
- 设计院项目设计流程与规范
- 西方哲学智慧2024-西方哲学智慧超星尔雅答案
- 党内法规学-形考任务一-国开(FJ)-参考资料
评论
0/150
提交评论