江苏省张家港市2024年八年级下册数学期末质量检测模拟试题含解析_第1页
江苏省张家港市2024年八年级下册数学期末质量检测模拟试题含解析_第2页
江苏省张家港市2024年八年级下册数学期末质量检测模拟试题含解析_第3页
江苏省张家港市2024年八年级下册数学期末质量检测模拟试题含解析_第4页
江苏省张家港市2024年八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省张家港市2024年八年级下册数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为().A.6 B.9 C.10 D.122.已知一次函数y=kx+b,-3<x<1时对应的y值为-1<y<3,则b的值是()A.2 B.3或0 C.4 D.2成03.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以 B.甲可以,乙不可以C.甲不可以,乙可以 D.甲、乙都不可以4.﹣2018的倒数是()A.2018 B. C.﹣2018 D.5.均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的()A. B. C. D.6.下列定理中没有逆定理的是()A.等腰三角形的两底角相等 B.平行四边形的对角线互相平分C.角平分线上的点到角两边的距离相等 D.全等三角形的对应角相等7.下列函数中y是x的一次函数的是()A.y=1x B.y=3x+1 C.y=8.下列图形中,不是中心对称图形的是()A. B. C. D.9.下列各组线段中,不能够组成直角三角形的是()A.6,8,10 B.3,4,5 C.4,5,6 D.5,12,1310.下列计算正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____12.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=kx上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____13.已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.14.在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.15.如图,在中,,,平分,点是的中点,若,则的长为__________.16.函数与的图象如图所示,则的值为____.17.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.18.若最简二次根式与能合并成一项,则a=_____.三、解答题(共66分)19.(10分)在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.20.(6分)如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)求该函数图象与坐标轴围成的三角形的面积.(3)判断点C(2,2)是在直线AB的上方(右边)还是下方(左边).21.(6分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).求:(1)点C的坐标;(2)直线AC与y轴的交点E的坐标.22.(8分)计算:6×2+6÷2﹣|3﹣2|23.(8分)如图①,矩形中,,,点是边上的一动点(点与、点不重合),四边形沿折叠得边形,延长交于点.图①图②(1)求证:;(2)如图②,若点恰好在的延长线上时,试求出的长度;(3)当时,求证:是等腰三角形.24.(8分)完成下面推理过程如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=.()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=,∠ABE=.()∴∠ADF=∠ABE∴DF∥.()∴∠FDE=∠DEB.()25.(10分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.(1)在图1中,作线段的垂直平分线;(2)在图2中,作的角平分线.26.(10分)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为21,∴CD=6,∴BC=2CD=1.故选D.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.2、D【解析】

本题分情况讨论①x=-3时对应y=-1,x=1时对应y=3;②x=-3时对应y=3,x=1时对应y=-1;将每种情况的两组数代入即可得出答案.【详解】①将x=-3,y=-1代入得:-1=-3k+b,将x=1,y=3代入得:3=k+b,解得:k=1,b=2;函数解析式为y=x+2,经检验验符合题意;②将x=-3,y=3,代入得:3=-3k+b,将x=1,y=-1代入得:-1=k+b,解得:k=-1,b=1,函数解析式为y=-x,经检验符合题意;综上可得b=2或1.故选D.【点睛】本题考查待定系数法求函数解析式,注意本题需分两种情况,不要漏解.3、A【解析】

直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.【详解】解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.4、D【解析】

根据倒数的概念解答即可.【详解】﹣2018的倒数是:﹣.故选D.【点睛】本题考查了倒数的知识点,解题的关键是掌握互为倒数的两个数的乘积为1.5、D【解析】

由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.6、D【解析】

先写出各选项的逆命题,判断出其真假即可解答.【详解】解:A、其逆命题是“一个三角形的两个底角相等,则这个三角形是等腰三角形”,正确,所以有逆定理;B、其逆命题是“对角线互相平分的四边形是平行四边形”,正确,所以有逆定理;C、其逆命题是“到角两边的距离相等的点在角平分线上”,正确,所以有逆定理;D、其逆命题是“两个三角形中,三组角分别对应相等,则这两个三角形全等”,错误,所以没有逆定理;故选:D.【点睛】本题考查的是命题与定理的区别,正确的命题叫定理.7、B【解析】

利用一次函数的定义即能找到答案.【详解】选项A:含有分式,故选项A错误;选项B:满足一次函数的概念,故选项B正确.选项C:含有分式,故选项C错误.选项D:含有二次项,故选项D错误.故答案为:B.【点睛】此题考查一次函数的定义,解题关键在于掌握其定义.8、B【解析】

解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.9、C【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【详解】A.62+82=102,能构成直角三角形,故不符合题意;B.32+42=52,能构成直角三角形,故不符合题意;C.42+52≠62,不能构成直角三角形,故符合题意;D.52+122=132,能构成直角三角形,故不符合题意.故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握运算公式.10、C【解析】

根据二次根式的性质和计算法则分别计算可得正确选项。【详解】解:A、不是同类二次根式,不能合并,故本选项错误;B、不是同类二次根式,不能合并,故本选项错误;C、正确;D、,故故本选项错误。故选:C【点睛】本题考查了二次根式的性质和运算,掌握运算法则是关键。二、填空题(每小题3分,共24分)11、2【解析】

根据方程的系数结合根的判别式,即可得出△=20-2m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+2②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【详解】∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,∴△=(﹣6)2﹣2(m+2)=20﹣2m≥0,解得:m≤1,∴m的取值范围为m≤1.∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+2②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=2,∴8=m+2,m=2;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为2.故答案是:2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.12、1【解析】

根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.【详解】当x=0时,y=4,∴B(0,4),当y=0时,x=1,∴A(1,0),∴OA=1,OB=4,∵ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,∴∠ABO=∠BCN=∠DAM,∵∠AOB=∠BNC=∠AMD=90°,∴△AOB≌△BNC≌△DMA(AAS),∴OA=DM=BN=1,AM=OB=CN=4∴OM=1+4=5,ON=4+1=5,∴C(4,5),D(5,1),把D(5,1)代入y=kx得:k=5∴y=5x当y=5时,x=1,∴E(1,5),点C向左平移到E时,平移距离为4﹣1=1,即:a=1,故答案为:1.【点睛】考查反比例函数的图象和性质、正方形的性质、全等三角形的判定和性质以及平移的性质等知识,确定平移前后对应点C、E的坐标是解决问题的关键.13、-1【解析】

另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.【详解】设另一个根为t,

根据题意得4+t=3,

解得t=-1,

即另一个根为-1.

故答案为-1.【点睛】此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−.14、140°【解析】

根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.【详解】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=80°,∴∠A=40°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.故答案为:140°.【点睛】本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.15、1【解析】

过点D作DE⊥AB于E,根据直角三角形两锐角互余求出∠A=10°,再根据直角三角形10°角所对的直角边等于斜边的一半求出DE,根据角平分线上的点到角的两边距离相等可得CD=DE,根据角平分线的定义求出∠CBD=10°,根据直角三角形10°角所对的直角边等于斜边的一半求出BD,再根据直角三角形斜边上的中线等于斜边的一半求解.【详解】如图,过点D作DE⊥AB于E,

∵∠ACB=90°,∠ABC=60°,

∴∠A=90°-60°=10°,

∴DE=AD=×6=1,

又∵BD平分∠ABC,

∴CD=DE=1,

∵∠ABC=60°,BD平分∠ABC,

∴∠CBD=10°,

∴BD=2CD=2×1=6,

∵P点是BD的中点,

∴CP=BD=×6=1.

故答案为:1.【点睛】此题考查含10度角的直角三角形,角平分线的性质,熟记各性质并作出辅助线是解题的关键.16、1【解析】

将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),

把x=1,y=1代入y=kx得k=1.

故答案是:1.【点睛】本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.17、10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.18、2【解析】

根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:,由最简二次根式与能合并成一项,得a+2=2.解得a=2.故答案是:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.三、解答题(共66分)19、(1)详见解析;(2)3【解析】

(1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形(2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.【详解】(1)证明:∵△BCE沿CE折叠,∴BE=B'E,BC=B'C∠BCE=∠B'CE∵四边形ABCD是矩形∴∠DCB=90°=∠B∴∠BCE=45°且∠B=90°∴∠BEC=∠BCE=45°∴BC=BE∵BE=B'E,BC=B'C∴BC=BE=B'C=B'E∴四边形BCB'E是菱形又∵∠B=90°∴四边形BCB'E是正方形(2)∵AB=8,BC=6∴根据勾股定理得:AC=10∵△BCE沿CE折叠∴B'C=BC=6,BE=B'E∴AB'=4,AE=AB﹣BE=8﹣B'E在Rt△AB'E中,AE2=B'A2+B'E2∴(8﹣B'E)2=16+B'E2解得:BE'=3∴BE=B'E=3【点睛】本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.20、(1)y=﹣x+3;(2);(3)在直线AB的上方.【解析】

(1)设一次函数解析式为y=kx+b,把A、B两点坐标分别代入利用待定系数法进行求解即可得;(2)由(1)中的解析式求得直线与x轴、y轴的交点坐标,利用三角形公式进行计算即可得;(3)把x=2代入解析式,通过计算进行判断即可得.【详解】(1)设一次函数解析式为y=kx+b,把A(6,﹣3)与B(﹣2,5)代入得:,解得:,则一次函数解析式为y=﹣x+3;(2)在y=﹣x+3中,令x=0,则有y=3,令y=0,则有-x+3=0,x=3,所以函数y=﹣x+3图象与坐标轴的交点坐标分别为(0,3)和(3,0),所以图象与坐标轴围成的三角形的面积是;(3)当x=2时,y=﹣2+3=1,所以点(2,2)在直线AB的上方.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、一次函数图象与坐标轴围成的三角形面积等,熟练掌握待定系数法是解题的关键.21、(1)C(3,);(1)E(0,)【解析】

(1)过C作CH⊥x轴于点H,利用平行四边形的性质结合直角三角形的性质得出C点坐标;(1)利用待定系数法求出一次函数解析式,再利用x=0进而得出答案.【详解】解:(1)过C作CH⊥x轴于点H,∵四边形ABCD为平行四边形,∴CD=AB=8,BC=AD=2,AB//DC,AD//BC.∴∠BAD=∠HBC∵∠BAD=20°,∴∠HBC=20°.∴BH=3,CH=.∵A(-1,0),∴AO=1.∴OB=2.∴OH=OB+BH=3.∴C(3,).(1)设直线AC的表达式为:y=kx+b,把A(-1,0)和C(3,)代入,得∴,解得:∴.∴E(0,)【点睛】此题主要考查了平行四边形的性质和待定系数法求一次函数解析式,正确掌握平行四边形的性质是解题关键.22、43﹣1【解析】

先根据二次根式的乘法、除法法则计算、去绝对值符号,再合并同类二次根式即可得.【详解】解:原式=13+3-(1-3)=33-1+3=43-1.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及绝对值的性质.23、(1)证明见解析;(2);(3)证明见解析【解析】

(1)由矩形的性质和平行线的性质得出∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,得出∠APN=∠PAN,即可得出NA=NP;(2)由矩形的性质得出CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,由勾股定理得出AE==5,求出DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得出方程,解方程即可;(3)过点D作GH∥AF,交EF于G,交AP于H,则GH∥AF∥PE,证出△PDH是等边三角形,得出DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,证出DH=AH,得出AH=PH,由平行线分线段成比例定理得出,得出EG=FG,再由线段垂直平分线的性质得出DE=DF即可.【详解】(1)证明;∵四边形ABCD是矩形,∴AB∥CD,∴∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,∴∠APN=∠PAN,∴NA=NP;(2)解:∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,∴∠PDE=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,∴AE==5,∴DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得:DP2+DE2=PE2,即x2+22=(4-x)2,解得:,即;(3)证明:过点D作GH∥AF,交EF于G,交AP于H,如图所示:则GH∥AF∥PE,∴∠PHD=∠NAH,∵∠PAD=30°,∴∠APD=90°-30°=60°,∠BAP=90°-30°=60°,∴∠PAN=∠BAP=60°,∴∠PHD=60°=∠APD,∴△PDH是等边三角形,∴DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,∴DH=AH,∴AH=PH,∵GH∥AF∥PE,∴,∴EG=FG,又∵GH⊥EF,∴DE=DF,∴△DEF是等腰三角形.【点睛】本题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、勾股定理、等边三角形的判定与性质、平行线分线段成比例定理、线段垂直平分线的性质等知识;本题综合性强,熟练掌握翻折变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论