![广东省深圳市龙华区九级2024年八年级下册数学期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view5/M00/1B/06/wKhkGGYWuvOAdY2HAAJKhv7IZT8965.jpg)
![广东省深圳市龙华区九级2024年八年级下册数学期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view5/M00/1B/06/wKhkGGYWuvOAdY2HAAJKhv7IZT89652.jpg)
![广东省深圳市龙华区九级2024年八年级下册数学期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view5/M00/1B/06/wKhkGGYWuvOAdY2HAAJKhv7IZT89653.jpg)
![广东省深圳市龙华区九级2024年八年级下册数学期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view5/M00/1B/06/wKhkGGYWuvOAdY2HAAJKhv7IZT89654.jpg)
![广东省深圳市龙华区九级2024年八年级下册数学期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view5/M00/1B/06/wKhkGGYWuvOAdY2HAAJKhv7IZT89655.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市龙华区九级2024年八年级下册数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列函数的图象经过(0,1),且y随x的增大而减小的是()A.y=一x B.y=x-1 C.y=2x+1 D.y=一x+12.使式子有意义的条件是()A.x≥4 B.x=4 C.x≤4 D.x≠43.分式①,②,③,④中,最简分式有()A.1个 B.2个 C.3个 D.4个4.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能确定5.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点6.将直线向下平移2个单位,得到直线()A. B. C. D.7.下列四个选项中运算错误的是()A. B. C. D.8.如图所示的图象反映的过程是:宝室从家跑步去体育馆,在那里锻炼了一段时间后又走到文具店去买铅笔,然后散步回家图中x表示时间,y表示宝宝离家的距离,那么下列说法正确的是A.宝宝从文具店散步回家的平均速度是B.室宝从家跑步去体育馆的平均速度是C.宝宝在文具店停留了15分钟D.体育馆离宝宝家的距离是9.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个 B.2个 C.3个 D.4个10.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)二、填空题(每小题3分,共24分)11.已知是一次函数,则__________.12.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.13.在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.14.二项方程在实数范围内的解是_______________15.如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.16.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
17.甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.18.在函数y=中,自变量x的取值范围是____.三、解答题(共66分)19.(10分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;(3)如图3,当点在线段的延长线上,且时,求线段的长.20.(6分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.21.(6分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表:行规学风纪律甲班838890乙班938685(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%、30%、50%,那么两个班级的排名顺序又怎样?22.(8分)如图,正方形,点在边上,为等腰直角三角形.(1)如图1,当,求证;(2)如图2,当,取的中点,连接,求证:23.(8分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)24.(8分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?25.(10分)如图1,点O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=OF,求的值.26.(10分)已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.(1)点D、E分别在线段BA、BC上;①若∠B=60°(如图1),且AD=BE,BD=CE,则∠APD的度数为;②若∠B=90°(如图2),且AD=BC,BD=CE,求∠APD的度数;(2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
设该函数解析式为(k≠1),由该函数的图象经过(1,1)可得出b=1,由y随x的增大而减小可得出k<1,再对照四个选项即可得出结论.【详解】解:设该函数解析式为(k≠1).
∵该函数的图象经过(1,1),
∴b=1;
∵y随x的增大而减小,
∴k<1.
故选D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出k<1及b=1是解题的关键.2、A【解析】
根据二次根式有意义的条件(大于或等于0)即可求出x的范围.【详解】∵有意义,∴x-4≥0,∴x≥4.故选A.【点睛】考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件(被开方数大于或等于0).3、B【解析】
利用约分可对各分式进行判断.【详解】①是最简分式;②,故不是最简分式;③,故不是最简分式;④是最简分式;所以,最简分式有2个,故选:B.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.4、B【解析】
根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;【详解】证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形.故选B.【点睛】本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.5、A【解析】
先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴活动中心P应在斜边AB的中点.
故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.6、A【解析】
根据一次函数图象的平移规律即可得.【详解】由一次函数图象的平移规律得:向下平移得到的直线为即故选:A.【点睛】本题考查了一次函数图象的平移规律,掌握图象的平移规律是解题关键.7、C【解析】
根据二次根式的运算法则,逐一计算即可.【详解】A选项,,正确;B选项,,正确;C选项,,错误;D选项,,正确;故答案为C.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.8、A【解析】
根据特殊点的实际意义即可求出答案.【详解】解:A、宝宝从文具店散步回家的平均速度是,正确;B、室宝从家跑步去体育馆的平均速度是,错误;C、宝宝在文具店停留了分钟,错误;D、体育馆离宝宝家的距离是,错误.故选:A.【点睛】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.9、C【解析】
连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;【详解】连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,∵S平行四边形BDEF=BD•CH=,故③正确,∵△ABC是边长为3的等边三角形,S△ABC=∴S△ABD∴S△AEF=S△AEC=•S△ABD=故④错误,故选C.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.10、C【解析】
先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【详解】解;由y=(m-1)xm2−8+m+1是一次函数,得,解得m=-1,m=1(不符合题意的要舍去).故答案为:-1.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.12、1【解析】
先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【详解】解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四边形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.13、【解析】
运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.【详解】∵,
∴,去分母得:,解得:经检验是原方程的解.故答案为.【点睛】本题除了定义运算外,还考查简单的分式方程的解法.14、x=-1【解析】
由2x1+54=0,得x1=-27,解出x值即可.【详解】由2x1+54=0,得x1=-27,∴x=-1,故答案为:x=-1.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.15、1:1【解析】
如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.【详解】解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.∵DE=AE,DF=FC,∴EF∥AC,EF:AC=1:2,∴S△DEF=S△DAC=×1S=S,同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,∴四边形EFQP是平行四边形,∴S平行四边形EFQP=1S,∴S△TPQ=S平行四边形EFQP=2S,∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,故答案为1:1.【点睛】本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.16、1【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.【点睛】本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17、1【解析】
结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.【详解】解:∵甲出发到返回用时1小时,返回后速度不变,∴返回到A地的时刻为x=2,此时y=120,∴乙的速度为60千米/时,设甲重新出发后的速度为v千米/时,列得方程:(5﹣2)(v﹣60)=120,解得:v=100,设甲在第t小时到达B地,列得方程:100(t﹣2)=10解得:t=6,∴此时乙行驶的路程为:60×6=360(千米),乙离B地距离为:10﹣360=1(千米).故答案为:1.【点睛】本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.18、x≥-2且x≠1【解析】
根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.【详解】解:由题意得,x+2≥1且2x≠1,
解得:x≥-2且x≠1.
故答案为:x≥-2且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共66分)19、(1);(2)见解析;(3).【解析】
(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
(2)证△BAE≌△CAF即可得;
(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.【详解】解:(1)如图1,连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC中点,
∴AE⊥BC,BE=BC=AB
在Rt△ABE中,AE=BEtanB=BE;(2)证明:连接,如图2中,∵四边形是菱形,,∴与都是等边三角形,∴,.∵,∴,在和中,,∴.∴.(3)解:连接,过点作于点,如图3所示,∵,,∴.在中,∵,,∴,∴.在中,∵,,∴,∴.由(2)得,,则,∵,∴,可得,∴,∴.【点睛】考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.20、见解析【解析】
首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点睛】本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21、(1)根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)两个班级的排名顺序发生变化,甲班第一,乙班第二.【解析】
(1)根据算术平均数的计算方法计算甲、乙班的平均数,通过比较得出得出结论,(2)利用加权平均数的计算方法分别计算甲、乙班的总评成绩,比较做出判断即可.【详解】(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)甲班的总评成绩:83×20%+88×30%+90×50%=88,乙班的总评成绩:93×20%=86×30%+85×50%=86.9∵88>86.9∴甲班高于乙班,答:两个班级的排名顺序发生变化,甲班第一,乙班第二.【点睛】考查算术平均数、加权平均数的意义及计算方法,解题的关键是掌握算术平均数、加权平均数的计算.22、(1)见解析;(2)见解析.【解析】
(1)可证,易知三角形FCG为等腰直角三角形,即,再求出;(2)添加辅助线,连接,在上截取,使得,连接,先求证,继而可证,在中,利用勾股定理即可求证.【详解】解:作四边形是正方形是等腰直角三角形连接,在上截取,使得,连接为等腰直角三角形,四边形是正方形三点共线为的中点,在中,即【点睛】本题是正方形与三角形的综合,主要考查了三角形全等、正方形的性质、勾股定理,辅助线的添加难度较大.23、需要m的铁棍.【解析】
根据图中的几何关系,然后由菱形的四边相等可以求出答案.【详解】由题意,知两个大菱形的边长为:(m).小菱形的边长为:(m).所以三个菱形的周长的和为:(m).所以所需铁棍的总长为:1.8×9+2.4×2+2=m.答:需要m的铁棍.【点睛】本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.24、(1);(2)公路运输方式运送的牛奶多,铁路运输方式所需用较少.【解析】分析:(1)由总价=单价×数量+其他费用,就可以得出y与x之间的函数关系式;(2)将y=1500或x=1500分别代入(1)的解析式就可以求出结论;详解:(1),(2)解得:,解得:.∵3000>2500,∴公路运输方式运送的牛奶多,∴(元),(元).∵1050>900,∴铁路运输方式所需费用较少.点睛:本题考查了单价×数量=总价的运用,由函数值求自变量的值及由自变量的值求函数值的运用,有理数大小比较的运用,分类讨论思想的运用,解答时求出函数的解析式是关键.25、(1)45°;(2)证明见解析;(3)【解析】
(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴==.即AE=×CO,CF=AO÷.∵OE=OF,∴=.∴AE=CO,CF=AO.∴=.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.26、(1)①60°;②45°;(2)见解析【解析】
(1)连结AC,由条件可以得出△ABC为等边三角形,再由证△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;(2)作AF⊥AB于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度铝合金门窗行业供应链合作协议书3篇
- 2025版离婚子女房产分割与抚养费支付执行协议书
- 2025年度绿色装修材料认证采购合同
- 2025年度生态公园防水工程劳务分包合同
- 2025年第三方健康机构合作协议书
- 2025年碳硫分析仪合作协议书
- 前台文员的礼仪与形象塑造计划
- 多样化评价方式的探索计划
- 职业发展规划思路计划
- 班主任如何引导学生养成良好的学习习惯计划
- 调节与集合的相关性 相对调节和相对集合的关系
- 《金融工程》课程教案
- 信贷管理系统需求说明书
- 蒙台梭利教育理论
- 水轮机结构总体介绍
- “求是鹰眼”反无人机系统
- 《X公司应收账款管理研究14000字(论文)》
- YS/T 441.1-2014有色金属平衡管理规范第1部分:铜选矿冶炼
- GB/T 23791-2009企业质量信用等级划分通则
- GB/T 19470-2004土工合成材料塑料土工网
- GB/T 18913-2002船舶和航海技术航海气象图传真接收机
评论
0/150
提交评论