大连市重点中学2024届数学八年级下册期末复习检测模拟试题含解析_第1页
大连市重点中学2024届数学八年级下册期末复习检测模拟试题含解析_第2页
大连市重点中学2024届数学八年级下册期末复习检测模拟试题含解析_第3页
大连市重点中学2024届数学八年级下册期末复习检测模拟试题含解析_第4页
大连市重点中学2024届数学八年级下册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大连市重点中学2024届数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A.,1 B.-,1 C.-,-1 D.,-12.对于反比例函数y=-的图象,下列说法不正确的是()A.经过点(1,-4) B.在第二、四象限 C.y随x的增大而增大 D.成中心对称3.一元一次不等式组的解集在数轴上表示为().A. B.C. D.4.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣45.要使二次根式有意义,则x的取值范围在数轴上表示正确的是()A. B.C. D.6.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.137.若反比例函数,在每个象限内y随x的增大而减小,则m的取值范围是()A.m> B.m< C.m>一 D.m<一8.在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A. B. C. D.9.关于的方程有两实数根,则实数的取值范围是()A. B. C. D.10.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在平面内,下列图案中,能通过图平移得到的是()A. B. C. D.12.下列各式中的最简二次根式是()A. B. C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,点P(﹣,﹣1)到原点的距离为_____.14.化简:___________.15.若正比例函数y=kx的图象经过点(1,2),则k=_______.16.已知双曲线经过Rt△OAB斜边OA的中点D,与直角边AB相交于点C,若S△OAC=3,则k=______.17.如图,在矩形中,对角线与相交于点,,,则的长为________.18.等腰三角形的腰长为5,底边长为8,则它底边上的高为_______,面积为________.三、解答题(共78分)19.(8分)观察下列各式:①,②;③,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.20.(8分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图中的值是.(2)补全图2的统计图.(3)求本次调查获取的样本数据的平均数、众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.21.(8分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.22.(10分)如果一组数据1,2,2,4,的平均数为1.(1)求的值;(2)求这组数据的众数.23.(10分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?24.(10分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.25.(12分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?26.如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.

参考答案一、选择题(每题4分,共48分)1、D【解析】分析:由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.详解:∵在直线中,当时,,∴直线过点(0,1),又∵直线是由直线向右平移4个单位长度得到的,∴,且直线过点(4,1),∴,解得:,∴.故选D.点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.2、C【解析】

根据反比例函数的性质用排除法解答.【详解】A、把点(1,-4)代入反比例函数y=-得:1×(-4)=-4,故A选项正确;B、∵k=-4<0,∴图象在第二、四象限,故B选项正确;C、在同一象限内,y随x的增大而增大,故C选项不正确;D、反比例函数y=-的图象关于点O成中心对称,故D选项正确.故选:C.【点睛】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.此题的易错点是在探讨函数增减性时没有注意应是在同一象限内.3、A【解析】

根据不等式解集的表示方法即可判断.【详解】解:解不等式①得:x>-1,

解不等式②得:x≤2,

∴不等式组的解集是-1<x≤2,

表示在数轴上,如图所示:

故选:A.【点睛】此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.4、D【解析】试题分析:直线l与y轴的交点(0,-3),而y=a为平行于x轴的直线,观察图象可得,当a<-3时,直线l与y=a的交点在第四象限.故选D考点:数形结合思想,一次函数与一次方程关系5、B【解析】

直接利用二次根式有意义的条件得出x的取值范围进而得出答案.【详解】解:要使二次根式有意义,则x≥0,则x的取值范围在数轴上表示为:.故选:B.【点睛】本题主要考查了二次根式有意义的条件,正确理解二次根式的定义是解题的关键.6、D【解析】

ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.7、A【解析】

根据反比例函数的性质可得关于m的不等式,解不等式即可求得答案.【详解】由题意得:2m-1>0,解得:m>,故选A.【点睛】本题考查了反比例函数的性质,①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8、C【解析】

根据正比例函数与一次函数的图象性质作答.【详解】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.故选:C.【点睛】本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.9、A【解析】

根据方程有实数根列不等式即可求出答案.【详解】∵方程有两实数根,∴∆,即16-4a,∴,故选:A.【点睛】此题考查一元二次方程的判别式,根据一元二次方程的根的情况求出未知数的值,正确掌握根的三种情况是解题的关键.10、B【解析】

由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,

∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响11、B【解析】

把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移.【详解】解:观察四个选项,可知B选项为原图经过平移所得,形状和方向均未发生改变.故选择B.【点睛】理解平移只改变位置,不改变图片的形状、大小和方向.12、C【解析】最简二次根式必须满足两个条件:①被开方数中不含开得尽方的因数(或因式);②被开方数中不含分母;由此可知选项A、B、D都不符合要求,只有C选项符合.故选C.二、填空题(每题4分,共24分)13、2【解析】∵点P的坐标为,∴OP=,即点P到原点的距离为2.故答案为2.点睛:平面直角坐标系中,点P到原点的距离=.14、【解析】

被开方数因式分解后将能开方的数开方即可化简二次根式.【详解】,故答案为:.【点睛】此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.15、2【解析】

由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.【详解】∵正比例函数y=kx的图象经过点(2,2),∴2=k×2,即k=2.故答案为2.【点睛】本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.16、﹣1.【解析】解:设D(m,).∵双曲线经过Rt△OAB斜边OA的中点D,∴A(1m,).∵S△OAC=3,∴•(﹣1m)•+k=3,∴k=﹣1.故答案为:﹣1.点睛:本题考查了反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17、【解析】

根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.【详解】∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∴△AOB是等边三角形,∴OB=AB=1,∴BD=2BO=2,在Rt△BAD中,故答案为【点睛】考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.18、31【解析】

根据等腰三角形的性质求得高的长,从而再根据面积公式求得面积即可.【详解】解:根据等腰三角形的三线合一得底边上的高也是底边的中线,则底边的一半是4,根据勾股定理求得底边上的高是3,则三角形的面积=×8×3=1.故答案为:3,1.【点睛】本题考查了等腰三角形的性质和勾股定理.综合运用等腰三角形的三线合一以及直角三角形的勾股定理是解答本题的关键.三、解答题(共78分)19、(1);(2);(3)详见解析.【解析】试题分析:(1)认真观察题中所给的式子,得出其规律并根据规律写出第④个等式;

(2)根据规律写出含n的式子即可;

(3)结合二次根式的性质进行化简求解验证即可.试题解析:(1)(2)(3)故答案为(1)20、(1)、;(2)详见解析;(3)平均数:16;众数:10;中位数:15;(4)608.【解析】

(1)由元的人数及其所占百分比可得总人数,用元人数除以总人数可得m的值;(2)总人数乘以元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为元的学生人数.【详解】(1)本次接受随机抽样调查的学生人数为人.∵.故答案为、;(2)元的人数为,补全图形如下:(3)本次调查获取的样本数据的平均数是:(元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元;(4)估计该校本次活动捐款金额为元的学生人数为人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.21、(1);(1)OF=1;(3)见解析.【解析】

(1)在Rt△ABD中,通过解直角三角形可求出OD的长,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD的解析式;(1)由等边三角形的性质结合三角形内角和定理,可得出∠BAE=∠CFE=30°,进而可得出∠OAF=∠OFA=30°,再利用等角对等边可得出线段OF的长;(3)通过解含30度角的直角三角形可求出BE的长,结合BC的长可得出CE=OF=1,由OB=CO,∠BOF=∠OCE及OF=CE可证出△OBF≌△COE(SAS),再利用全等三角形的性质可得出BF=OE.【详解】(1)∵△OBC为等边三角形,∴∠ABC=60°.在Rt△ABD中,tan∠ABD=,即,∴AD=,∴点D的坐标是(0,).设BD的解析式是y=kx+b(k≠0),将B(6,0),D(0,)代入y=kx+b,得:,解得:,∴直线BD的解析式为.(1)解:∵AE⊥BC,△OBC是正三角形,∴∠BAE=∠CFE=30°,∴∠OAF=∠OFA=30°,∴OF=OA=1,即OF的长为1.(3)证明:∵AB=8,∠OBC=60°,AE⊥BC,∴BE=AB=4,∴CE=BC-BE=6-4=1,∴OF=CE.在△OBF和△COE中,,∴△OBF≌△COE(SAS),∴BF=OE.【点睛】本题考查了等边三角形、解直角三角形、待定系数法求一次函数解析式、等腰三角形的性质、三角形内角和定理以及全等三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数的解析式;(1)通过角的计算,找出∠OAF=∠OFA;(3)利用全等三角形的判定定理SAS,证出△OBF≌△COE.22、(1);(2)2和4.【解析】

(1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;(2)根据众数的定义即可求出答案.【详解】解:(1)由平均数为1,得,解得:.(2)当时,这组数据是2,2,1,4,4,其中有两个2,也有两个4,是出现次数最多的,∴这组数据的众数是2和4.【点睛】本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.23、(1)该学校接待学生人数的增长率为60%;(2)单价定为5元.【解析】

(1)设平均月增长率为,根据题意得到一元二次方程即可求解;(2)设定价为元,求出可卖出的件数,根据义卖所得的金额为600元得到一元二次方程即可求解.【详解】解:(1)设平均月增长率为,则根据题意得,解得,(舍),∴该学校接待学生人数的增长率为60%.(2)设定价为元,此时可卖出件,∴可列方程,解得,.∵作品单价要尽可能便宜,∴单价定为5元.答:当单价定为5元时,义卖所得的金额为600元.【点睛】本题考查了一元二次方程的应用,关键在于明确数量与每件利润的表示方法.24、(1)详见解析;(2)详见解析【解析】

(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.【详解】(1)∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE;∴∠B=∠EDC;又∵AB=AC,∴AC=DE,∠B=∠ACB,∴∠EDC=∠ACD;∵在△ADC和△ECD中,AC=ED∠ACD=∠EDC∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°,∴▱ADCE是矩形.25、30(海里

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论