湖北省当阳市2024届八年级数学第二学期期末学业质量监测试题含解析_第1页
湖北省当阳市2024届八年级数学第二学期期末学业质量监测试题含解析_第2页
湖北省当阳市2024届八年级数学第二学期期末学业质量监测试题含解析_第3页
湖北省当阳市2024届八年级数学第二学期期末学业质量监测试题含解析_第4页
湖北省当阳市2024届八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省当阳市2024届八年级数学第二学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.132.对于的理解错误的是()A.是实数 B.是最简二次根式 C. D.能与进行合并3.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小4.下列命题是假命题的是()A.四边都相等的四边形为菱形 B.对角线互相平分的四边形为平行四边形C.对角线相等的平行四边形为矩形 D.对角线互相垂直且相等的四边形为正方形5.如图,在正方形中,为边上一点,将沿折叠至处,与交于点,若,则的大小为()A. B. C. D.6.设的整数部分是,小数部分是,则的值为().A. B. C. D.7.交警在一个路口统计的某个时段来往车辆的分布如条形图所示.请找出这些车辆速度的众数、中位数分别是()A.52,53 B.52,52 C.53,52 D.52,518.在下列各式中,一定是二次根式的是()A. B. C. D.9.下表是小红填写的实践活动报告的部分内容:设铁塔顶端到地面的高度为,根据以上条件,可以列出的方程为()A. B.C. D.10.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55° B.60° C.65° D.70°二、填空题(每小题3分,共24分)11.正比例函数()的图象过点(-1,3),则=__________.12.已知点,点,若线段AB的中点恰好在x轴上,则m的值为_________.13.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.14.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题15.将二元二次方程化为两个一次方程为______.16.如图,中,点是边上一点,交于点,若,,的面积是1,则的面积为_________.17.已知一次函数y=x+4的图象经过点(m,6),则m=_____.18.如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______三、解答题(共66分)19.(10分)如图,在直角坐标系中,四边形OABC为矩形,A(6,0),C(0,3),点M在边OA上,且M(4,0),P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度分别为每秒1个单位、每秒2个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).(1)用含t的代数式表示点P的坐标.(2)分别求当t=1,t=3时,线段PQ的长.(3)求S与t之间的函数关系式.(4)直接写出L落在第一象限的角平分线上时t的值.20.(6分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.编号12345甲1213141516乙131416121021.(6分)顶点都在格点上的多边形叫做格点多边形.以下的网格中,小正方形的边长为1.请按以下要求,画出一个格点多边形(要标注其它两个顶点字母).(1)在图甲中,画一个以为一边且面积为15的格点平行四边形;(2)在图乙中,画一个以为一边的格点矩形.22.(8分)解不等式组,并在数轴上把解集表示出来.23.(8分)小明通过试验发现;将一个矩形可以分别成四个全等的矩形,三个全等的矩形,二个全等的矩形(如上图),于是他对含的直角三角形进行分别研究,发现可以分割成四个全等的三角形,三个全等的三角形.(1)请你在图1,图2依次画出分割线,并简要说明画法;(2)小明继续想分割成两个全等的三角形,发现比较困难.你能把这个直角三角形分割成两个全等的三角形吗?若能,画出分割线;若不能,请说明理由.(注:备用图不够用可以另外画)24.(8分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:中学生综合素质评价成绩中学生综合素质评价等级A级B级C级D级现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;(2)补全图中的条形统计图;(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.25.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.26.(10分)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.

解答:360°÷30°=1.

故选C.

“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.2、D【解析】

根据根的性质对选项进行判断即可【详解】A.是实数,故本选项正确B.是最简二次根式,故本选项正确C.,故本选项正确D.与=不是同类二次根式,不能合并,故本选项错误故选D.【点睛】本题考查根的性质,熟练掌握二次根的性质是解题关键3、C【解析】

分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【详解】选项A,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D,×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,所以,故D正确;故答案选C.考点:算术平均数;中位数;众数;方差.4、D【解析】

根据矩形、平行四边形、菱形、正方形的判定定理判断即可.【详解】A、根据菱形的判定定理可知是真命题;B、根据平行四边形的判定定理可知是真命题;C、根据矩形的的判定定理可知是真命题;D、根据正方形的判定定理可知是假命题.故选D【点睛】本题考查假命题的定义,涉及了矩形、平行四边形、菱形、正方形的判定定理.5、B【解析】

首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.【详解】∵四边形ABCD为正方形,∴∠B=∠BCD=∠BAD=90°,∴∠ACB=∠BAC=45°,∵∠EFC=69°,∴∠BEF=∠EFC+∠ACB=114°,由折叠性质可得:∠BEA=∠BEF=57°,∴∠BAE=90°−57°=33°,∴∠EAC=45°−33°=12°,故选:B.【点睛】本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.6、B【解析】

只需首先对

估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.【详解】解:∵4<5<9,∴1<<2,∴-2<<-1.∴1<<2.∴a=1,∴b=5--1=,∴a-b=1-2+=故选:B.【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.“夹逼法”是估算的一般方法,也是常用方法.7、B【解析】

根据众数、中位数的意义,分别求出众数、中位数,再做出选择即可.【详解】车速出现次数最多的是52千米/时,因此车速的众数是52,一共调查27辆车,将车速从小到大排列后,处在中间的一个数是52,因此中位数是52,故选:B.【点睛】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是得出答案的前提.8、C【解析】试题解析::A、是三次根式;故本选项错误;B、被开方数-10<0,不是二次根式;故本选项错误;C、被开方数a2+1≥0,符合二次根式的定义;故本选项正确;D、被开方数a<0时,不是二次根式;故本选项错误;故选C.点睛:式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.9、A【解析】

过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x-10,得到CE=x-10,根据三角函数的定义列方程即可得到结论.【详解】解:过D作DH⊥EF于H,

则四边形DCEH是矩形,

∴HE=CD=10,CE=DH,

∴FH=x-10,

∵∠FDH=α=45°,

∴DH=FH=x-10,

∴CE=x-10,∴x=(x-10)tan50°,

故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,正确的识别图形,由实际问题抽象出一元一次方程.10、D【解析】

根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.二、填空题(每小题3分,共24分)11、-1【解析】

将(-1,1)代入y=kx,求得k的值即可.【详解】∵正比例函数()的图象经过点(-1,1),∴1=-k,解得k=-1,故答案为:-1.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.12、2【解析】

因为点A,B的横坐标相同,线段AB的中点恰好在x轴上,故点A,B关于x轴对称,纵坐标互为相反数,由此可得m的值.【详解】解:点A,B的横坐标相同,线段AB的中点恰好在x轴上点A,B关于x轴对称,纵坐标互为相反数点A的纵坐标为-2故答案为:2【点睛】本题考查了平面直角坐标系中点的对称问题,正确理解题意是解题的关键.13、3【解析】

由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3【点睛】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.14、19【解析】设他至少应选对x道题,则不选或错选为25−x道题.依题意得4x−2(25−x)⩾60得x⩾18又∵x应为正整数且不能超过25所以:他至少要答对19道题.故答案为19.15、和【解析】

二元二次方程的中间项,根据十字相乘法,分解即可.【详解】解:,,∴,.故答案为:和.【点睛】本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.16、【解析】

利用△BFE∽△DFA,可求出△DFA的面积,再利用来求出△BAF的面积,即可得△ABD的面积,它的2倍即为的面积.【详解】解:中,BE∥AD,∴△BFE∽△DFA,∴.而△BEF的面积是1,∴S△DFA=.又∵△BFE∽△DFA∴.∵,即可知S△BAF=.而S△ABD=S△BAF+S△DFA∴S△AFD=.∴▱ABCD的面积=×2=.故答案为.【点睛】本题考查的是利用相似形的性质求面积,把握相似三角形的面积比等于相似比的平方是解决本题的重点.17、1【解析】试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=1.故答案为1.18、2【解析】

试题解析::如图,过A作AH⊥BC交CB的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,∵∠BAC=∠C=30°,作点P关于直线AC的对称点P′,过P′作P′Q⊥BC于Q交AC于K,则P′Q的长度=PK+QK的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH是矩形,∴P′Q=AH=2,即PK+QK的最小值为2.【点睛】本题考查了轴对称确定最短路线问题,矩形的性质,解直角三角形,熟记利用轴对称确定最短路线的方法是解题的关键.三、解答题(共66分)19、(1)P(1+t,0)(0≤t≤1);(2)当t=1时,PQ=2,当t=2时,PQ=3;(2)S=;(1)t=或s时,L落在第一象限的角平分线上.【解析】

(1)求出OP的长即可解决问题;(2)法两种情形分别求出MQ、PM的长即可解决问题;(2)法三种情形:①如图1中,当0≤t≤1时,重叠部分是正方形PQLR;②如图2中,当1<t≤2时,重叠部分是四边形PQDE;③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,分别求解即可;(1)根据OQ=PQ,构建方程即可解决问题.【详解】解:(1)如图1中,∵M(1,0),∴OM=1.PM=t,∴OP=1+t,∴P(1+t,0)(0≤t≤1).(2)当t=1时,MQ=2,MP=1,∴PQ=2.当t=2时,MQ=2,PM=2,∴PQ=2+2=3.(2)①如图1中,当0≤t≤1时,重叠部分是正方形PQLR,S=PQ2=9t2②如图2中,当1<t≤2时,重叠部分是四边形PQDE,S=PQ•DQ=9t.③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,S=AQ•AB=2[6-2(t-2)]=-6t+20.综上所述,S=.(1)L落在第一象限的角平分线上时,OQ=LQ=PQ,∴1-2t=2t或2(t-2)=t+1-2(t-2),解得t=或.∴t=或s时,L落在第一象限的角平分线上.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会由方程的思想思考问题,属于中考压轴题.20、甲种水稻出苗更整齐【解析】

根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.【详解】解:(厘米),(厘米),(厘米),(厘米),∵,∴甲种水稻出苗更整齐.【点睛】本题考查平均数、方差的计算及意义,需熟记计算公式.21、(1)见解析;(2)见解析.【解析】

(1)利用平行四边形及网格的特点即可解决问题;(2)根据网格的特点构造直角即可求解.【详解】如图:(1)四边形ABCD为所求;(2)四边形ABEF为所求.【点睛】本题考查网格−应用与设计,勾股定理,平行四边形的判定和性质,矩形的判定等知识,解题的关键是学会利用数形结合的思想解决问题.22、x>1【解析】

分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解:解不等式①,得x>1,解不等式②,得x≥-4,把不等式①和②的解集在数轴上表示出来为:∴原不等式组的解集为x>1,【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.23、见解析【解析】

(1)利用三角形中位线的性质以及垂直平分线的性质得出符合要求的图形即可;(2)利用要把△ABC分割成两个三角形则分割线必须经过三角形的顶点,分别分析得出答案即可.【详解】(1)如图1,取AC的中点D作ED⊥AB垂足为E,作DF⊥BC垂足为F,连接DB,此时△AED≌△BED≌△DFB≌△DFC,如图2,取AC的中点D,作AC的中垂线交BC于E,连接AE;此时△ABE≌△ADE≌△CDE;(2)不能,因为要把△ABC分割成两个三角形则分割线必须经过三角形的顶点,但分割线过锐角顶点时,分割出的两个三角形必定一个是直角而另一个不是,所以不全等;当分割线经过直角顶点时,若分割线与斜边不垂直时(见备用图1),分割出的两个三角形必定一个是锐角三角形而另一个是钝角三角形,所以不全等;而当分割线与斜边垂直时(见备用图2),分割出的两个直角三角形相似,但相似比是:1:,所以不全等,综上所述,不能把这个直角三角形分割成两个全等的小三角形。【点睛】本题考查作图,根据题意利用三角形中位线的性质以及垂直平分线的性质得出符合要求的图形是解题关键.24、(1)100;;(2)补图见解析;(3)240人.【解析】

根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有.【详解】解:在这次调查中,一共抽取学生名,图中等级为D级的扇形的圆心角等于,故答案为100、;等级人数为名,补全图形如下:估计该校等级为C级的学生约有人.【点睛】本题考核知识点:统计图,由样本估计总体.解题关键点:从统计图获取信息.25、(1)y=2x;(2);(3)点M的坐标为(,0).【解析】

(1)先求出点A的坐标,然后设直线AO的解析式为y=kx,用待定系数法求解即可;(2)由面积法求出BD的长,从而求出点D的坐标,然后带入y=-x+b求解即可;(3)先求出点C的坐标,作点C关于x轴的对称点E,此时M到A、C的距离之和最小,求出直线AE的解析式,即可求出点M的坐标.【详解】(1)OB=4,AB=8,∠ABO=90°,∴A点坐标为(4,8),设直线AO的解析式为y=kx,则4k=8,解得k=2,即直线AO的解析式为y=2x;(2)OB=4,∠ABO=90°,=4,∴DB=2,∴D点的坐标为(4,2),把D(4,2)代入得:=6,∴直线CD的解析式为;(3)由直线与直线组成方程组为,解得:,∴点C的坐标为(2,4)如图,设点M使得MC+MA最小,作点C关于x轴的对称点E,可得点E的坐标为(2,-4),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论