版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省潜山市第四中学2024届数学八年级下册期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=()A.70° B.60° C.50° D.40°2.如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为()A. B. C. D.3.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A. B. C. D.4.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣15.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x的值为()A.1 B.4 C.2 D.-0.56.下列曲线中不能表示是的函数的是A. B.C. D.7.下列调查中,不适合普查但适合抽样调查的是()A.调查年级一班男女学生比例 B.检查某书稿中的错别字C.调查夏季冷饮市场上冰淇凌的质量 D.调查载人航天飞船零件部分的质量8.若关于x的方程的一个根是3,则m-n的值是A.-1 B.-3 C.1 D.39.下列因式分解正确的是()A. B.C. D.10.下列命题的逆命题成立的是()A.对顶角相等 B.两直线平行,同位角相等C.如果a=b,那么a2=b2 D.正方形的四条边相等11.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为,,=0.48,=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁12.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为()A.(-2,-3) B.(2,-3) C.(-2,3) D.(2,3)二、填空题(每题4分,共24分)13.直线与平行,且经过(2,1),则+=____________.14.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.15.如图,的对角线,相交于点,且,,,则的面积为______.16.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.17.如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.18.如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.三、解答题(共78分)19.(8分)如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.20.(8分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.(1)求该厂今年产量的月平均増长率为多少?(2)预计月份的产量为多少万台?21.(8分)如图,四边形ABCD,AB//DC,∠B=55,∠1=85,∠2=40(1)求∠D的度数:(2)求证:四边形ABCD是平行四边形22.(10分)如图,每个小正方形的边长都为l.点、、、均在网格交点上,求点到的距离.23.(10分)求证:等腰三角形的底角必为锐角.(请根据题意画出图形,写出已知、求证,并证明)已知:求证:证明:24.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花14万元,购买2台甲型设备比购买3台乙型设备少花4万元.(1)直接写出甲乙两种型号设备每台的价格分别为多少万元;(2)该公司经预算决定购买节省能源的新设备的资金不超过90万元,你认为该公司有几种购买方案?(3)在(2)的条件下,若该公司使用新设备进行生产,已知甲型设备每台的产量为240吨/月,乙型设备每台的产量为180吨/月,每月要求总产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.25.(12分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.26.计算:(1)-2(2)(-)•(+)
参考答案一、选择题(每题4分,共48分)1、D【解析】
先根据平行四边形的性质得到∠C=70°,再根据DC=DB即可求∠CDB.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=70°,∵DC=DB,∴∠CDB=180°-2∠C=40°,故选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.2、D【解析】
根据三角形中位线定理解答.【详解】解:∵点M,N分别是AC,BC的中点,
∴AB=2MN=13(m),
故选:C.【点睛】本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.3、B【解析】
先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.【详解】解:∵,∴∠BED=∠BEC在Rt△BDE与Rt△BCE中∴Rt△BDE≌Rt△BCE(HL)∴DE=CE∴点E是CD的中点,又∵点F是AC的中点,∴EF是△ADC的中位线,∴∵,,,∴AD=AB-BC=4∴EF=2故答案为:B.【点睛】本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.4、B【解析】解:分式方程去分母得:2x-a=x+1,解得:x=a+1.根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.即字母a的取值范围为a>-1.故选B.点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.5、B【解析】
根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【详解】根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故选B.【点睛】本题考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.6、D【解析】
根据函数的定义即可判断.【详解】因为是的函数时,只能一个x对应一个y值,故D错误.【点睛】此题主要考查函数的定义,解题的关键是熟知函数图像的性质.7、C【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多且具有破坏性,而抽样调查得到的调查结果比较近似.据此解答即可.【详解】A.调查年级一班男女学生比例,调查范围小,准确度要求高,适合普查,故该选项不符合题意,B.检查某书稿中的错别字是准确度要求高的调查,适合普查,故该选项不符合题意.C.调查夏季冷饮市场上冰淇凌的质量具有破坏性,不适合普查,适合抽样调查,故该选项符合题意,D.调查载人航天飞船零件部分的质量是准确度要求高的调查,适合普查,故该选项不符合题意.故选C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、B【解析】
把x=1代入已知方程,即可求得(m-n)的值.【详解】解:由题意,得
x=1满足方程,
所以,9+1m-1n=0,
解得,m-n=-1.
故选B.【点睛】本题考查一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.9、C【解析】
根据因式分解的定义及方法逐项分析即可.【详解】A.,故不正确;B.在实数范围内不能因式分解,故不正确;C.,正确;D.的右边不是积的形式,故不正确;故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.10、B【解析】
分别写出四个命题的逆命题,然后判断真假即可.【详解】A,逆命题是相等的角是对顶角,错误;B,逆命题是同位角相等,两直线平行,正确;C,逆命题是如果,则,错误;D,逆命题是四条边相等的四边形是正方形,错误;故选:B.【点睛】本题主要考查逆命题的真假,能够写出逆命题是解题的关键.11、D【解析】
根据方差的意义进行判断.【详解】解:∵<<<∴四人中成绩最稳定的是丁.故选:D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12、B【解析】
直接利用关于x,y轴对称点的性质结合P2的坐标得出点P的坐标.【详解】∵P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,P2的坐标为(-2,3),
∴P1的坐标为:(-2,-3),故点P的坐标为:(2,-3).
故选B.【点睛】考查了关于x,y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.二、填空题(每题4分,共24分)13、6【解析】∵直线y=kx+b与y=−5x+1平行,∴k=−5,∵直线y=kx+b过(2,1),∴−10+b=1,解得:b=11.∴k+b=-5+11=614、1.【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.15、1【解析】
已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=AC=5,OB=BD=13,再利用勾股定理的逆定理判定∠BAC=90°,由平行四边形的面积公式求解即可.【详解】∵四边形ABCD是平行四边形,∴OA=AC=5,OB=BD=13,∵AB=12,∴OA2+OB2=AB2,∴AC⊥AB,∴∠BAC=90°,∴▱ABCD的面积=AB•AC=12×10=1;故答案为:1.【点睛】本题考查了平行四边形的性质及勾股定理的逆定理,正确判定∠BAC=90°是解决问题的关键.16、3【解析】
由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3【点睛】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.17、1【解析】
将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.【详解】解:设A(1,m).把A(1,m)代入y=6﹣x得:m=﹣1+6=4,把A(1,4)代入y=kx得4=1k,解得k=1.故答案是:1.【点睛】本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.18、1【解析】
连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.【详解】解:连接DC,∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,,∵∠BCD=30°,,∴DE=1,故答案为1.【点睛】本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.三、解答题(共78分)19、(1);(2)S=t2﹣2t+8(0<t<2);(3).【解析】
由题意可得:由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,(1)判断出AQ=AP,得出2t=4-t,即可;(2)直接利用面积的和差即可得出结论;(3)先判断=,再得到,从而得出解方程即可得出结论.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,由运动知,DP=t,AQ=2t,∴AP=4﹣t,BQ=4﹣2t,(1)连接BD,如图1,∵AB=AD,∴∠ABD=∠ADB,∵PQ∥BD,∴∠ABD=∠AQP,∠APQ=∠ADB,∴∠APQ=∠AQP,∴AQ=AP,∴2t=4﹣t,∴t=;(2)S=S正方形ABCD﹣S△APQ﹣S△BCQ﹣S△CDP=AB2﹣AQ×AP﹣BQ×BC﹣DP×CD=16﹣×2t×(4﹣t)﹣×(4﹣2t)×4﹣t×4=16+t2﹣4t﹣8+4t﹣2t=t2﹣2t+8(0<t<2);(3)如图2,过点C作CN⊥PQ于N,∴S△MCQ=MQ×CN,S△MCP=MP×CN,∵S△QCM:S△PCM=3:5,∴=,∴,过点M作MG⊥AB于G,MH⊥AD于H,∵点M是正方形ABCD的对角线AC上的一点,∴MG=MH,∴S△AMQ=AQ×MG,S△APM=AP×MH,∴∴∴t=.【点睛】四边形综合题,主要考查了正方形的性质,平行线的性质,同高的两三角形的面积比是底的比,方程思想,解本题的关键是用方程的思想解决问题.20、(1)20%;(2)8.64万台.【解析】试题分析:(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2,解方程即可得到所求答案;(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.试题解析:(1)设该厂今年产量的月平均增长率是x,根据题意得:5(1+x)2﹣5(1+x)=1.2解得:x=﹣1.2(舍去),x=0.2=20%.答:该厂今年的产量的月增长率为20%;(2)7月份的产量为:5(1+20%)3=8.64(万台).答:预计7月份的产量为8.64万台.21、(1)55º;(2)见解析.【解析】【分析】(1)根据三角形内角和为180°,可得结果;(2)根据平行线性质求出∠ACB=85°,由∠ACB=∠1=85°得AD∥BC.两组对边平行的四边形是平行四边形.【详解】(1)解∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°.(2)证明:∵AB∥DC,∴∠2+∠ACB+∠B=180°.∴∠ACB=180°-∠B-∠2=180°-55°-40°=85°.∵∠ACB=∠1=85°,∴AD∥BC.又∵AB∥DC∴四边形ABCD是平行四边形.【点睛】此题考核知识点:三角形内角和性质;平行线性质;平行四边形判定.解题关键:根据所求,算出必要的角的度数,由角的特殊关系判定边的位置关系.此题比较直观,属基础题.22、【解析】
求出△ABC的面积,根据三角形的面积公式计算,得到答案.【详解】连接,由勾股定理得,,设点到的距离为,的面积,则,解得,,即点到的距离为.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.23、详见解析【解析】
根据题意写出已知、求证,假设∠B=∠C≥90°,计算得出∠A+∠B+∠C>180°,与三角形内角和定理矛盾,从而得出假设不成立即可.【详解】解:求证:等腰三角形的底角必为锐角.已知:如图所示,△ABC中,AB=AC.求证:∠B=∠C<90°.证明:∵AB=AC∴∠B=∠C假设∠B=∠C≥90°∴∠B+∠C≥180°∵∠A>0°∴∠A+∠B+∠C>180°与三角形内角和定理∠A+∠B+∠C=180°矛盾∴假设不成立∴等腰△ABC中∠B=∠C<90°,即等腰三角形的底角必为锐角.【点睛】本题考查了命题的证明,等腰三角形的性质,解题的关键是根据题意写出已知求证,并提出假设,推翻假设.24、(1)甲型号每台10万元,乙型号每台8万元;(2)有6种购买方案;(3)最省钱的购买方案为:选购甲型设备4台,乙型设备6台.【解析】
(1)设甲型设备每台的价格为x万元,乙型设备每台的价格为y万元,根据“购买3台甲型设备比购买2台乙型设备多花14万元,购买2台甲型设备比购买3台乙型设备少花4万元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲型设备m台,则购买乙型设备(10-m)台,由于购买节省能源的新设备的资金不超过90万元,即可得出关于m的一元一次不等式组,解之即可得出各购买方案;(3)由每月要求总产量不低于2040吨,可得出关于m的一元一次不等式,解之结合(2)的结论即可找出m的值,再利用总价=单价×数量求出两种购买方案所需费用,比较后即可得出结论.【详解】(1)设甲型号每台万元,乙型号每台万元,则,解得;甲型号每台万元,乙型号每台万元(2)设购买甲型台,乙型台,根据题意得,,解得,,∵取非负整数,,∴有6种购买方案;(3)根据题意,得,解得,,∴当时,购买资金为10×4+8×6=88(万元),当时,购买资金为10×5+8×5=90(万元),则最省钱的购买方案为:选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政治七下教育课件
- 冷热与温度课件
- 《多媒体数据库概述》课件
- 肋骨骨折的护理个案
- 主题班会-中学生如何正确使用手机
- 手术室巡回护士的工作
- 绵阳市高2022级第一次诊断性考试语文阅卷报告
- 特殊感染患者手术护理
- 黄山松课件教学课件
- 肺炎病人护理查房查体
- 《三个儿子》二年级下册
- 西湖文旅大数据报告
- 小学生校园文明礼仪教育课件
- 电缆绝缘电阻测试记录表格模板
- 2022年工程勘察设计收费管理规定
- DB44∕T 858-2011 空调器高处作业安全规范
- 实验室十大危险操作和安全隐患
- 01第三届北京市大学生模拟法庭竞赛第一轮赛题B
- Pixhawk飞控快速使用指南
- 红色大气乘风破浪开拓未来年会PPT模板课件
- 顺丰快递公司视觉识别VI手册(清晰电子版)
评论
0/150
提交评论