版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏自治区昌吉州2024届数学八年级下册期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣52.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点 C.C点 D.D点3.计算(5﹣﹣2)÷(﹣)的结果为()A.﹣5 B.5 C.7 D.﹣74.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P的坐标是()A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)5.己知一次函数,若随的增大而增大,则的取值范围是()A. B. C. D.6.一次函数的图像如图,那么下列说法正确的是().A.时, B.时, C.时, D.时,7.一组数据1,2,3,5,4,3中的中位数和众数分别是()A.3,3 B.5,3 C.4,3 D.5,108.已知x=+1,y=-1,则的值为()A.20 B.16 C.2 D.49.函数中自变量x的取值范围是()A. B. C. D.10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()ABCD11.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是()A.1 B.2 C.3 D.412.数据2,6,4,5,4,3的平均数和众数分别是()A.5和4 B.4和4 C.4.5和4 D.4和5二、填空题(每题4分,共24分)13.如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.14.甲,乙,丙三位同学近次快速阅读模拟比赛成绩平均分均为分,且甲,乙,丙的方差是,则发挥最稳定的同学是__________.15.如图,在矩形中,,,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把沿EF折叠,点B落在点处.若,当是以为腰的等腰三角形时,线段的长为__________.16.如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.17.在□ABCD中,∠A,∠B的度数之比为2:7,则∠C=__________.18.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.三、解答题(共78分)19.(8分)某商场进行促销,购物满额即可获得1次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出1个球,红色、黄色、白色分别代表一、二、三等奖.(1)若小明获得1次抽奖机会,小明中奖是事件;(填随机、必然、不可能)(2)小明观察一段时间后发现,平均每8个人中会有1人抽中一等奖,2人抽中二等奖,若袋中共有24个球,请你估算袋中白球的数量;(3)在(2)的条件下,如果在抽奖袋中减少3个白球,那么抽奖一次恰好抽中一等奖的概率是多少?请说明理由.20.(8分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.21.(8分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数
9
10
11
天数
3
1
1
(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.22.(10分)某校某次外出社会实践活动分为三类,因资源有限,七年级7班分配到20个名额,其中甲类2个、乙类8个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、30个空签.采取抽签的方式来确定名额分配,请解决下列问题:(1)该班小明同学恰好抽到丙类名额的概率是多少?(2)该班小丽同学能有幸去参加实践活动的概率是多少?(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?23.(10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y,y(千米)与行驶时间x(小时)之间的函数关系图象。(1)填空:A,B两地相距___千米;货车的速度是___千米/时。(2)求两小时后,货车离C站的路程y与行驶时间x之间的函数表达式;(3)客、货两车何时距离不大于30km?24.(10分)如图,四边形ABCD的四个顶点都在网格上,且每个小正方形的边长都为1(1)求四边形ABCD的面积;(2)求∠BCD的度数.25.(12分)计算(1)×(2)()0+-(-)-226.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数At≤0.55B0.5<t≤120C1<t≤1.5aD1.5<t≤230Et>210请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?
参考答案一、选择题(每题4分,共48分)1、A【解析】
分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.2、B【解析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.3、C【解析】
先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】解:原式=(﹣2﹣6)÷(﹣)=﹣1÷(﹣)=1.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4、D【解析】
如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【详解】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,∠EAP'=∠EBP∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.【点睛】此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.5、A【解析】
根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.【详解】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选A.【点睛】一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.6、D【解析】
根据函数图象可以直接得到答案.【详解】A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选D.【点睛】考查了一次函数图象和一次函数的性质,解答此题,需要学生具备一定的读图能力,难度中等.7、A【解析】
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【详解】解:将这组数据按从小到大的顺序排列为:1、2、3、3、4、5,这组数据的中位数是,在这一组数据中3是出现次数最多的,故众数是3;故选:A.【点睛】本题考查了众数与中位数的定义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、A【解析】
原式利用完全平方公式化简,将x与y的值代入计算即可求出值.【详解】当x=+1,y=-1时,x2+2xy+y2=(x+y)2=(+1+-1)2=(2)2=20,故选A.【点睛】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.9、B【解析】试题分析:根据二次根式的意义,被开方数是非负数.所以1﹣x≥0,解得x≤1.故选B.考点:函数自变量的取值范围.10、C【解析】
试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.故选:C.考点:函数的图象.11、D【解析】分析:利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理;利用圆的面积公式表示出S1、S2、S3,然后根据勾股定理即可解答;在勾股定理的基础上结合等腰直角三角形的面积公式,运用等式的性质即可得出结论;分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.详解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2.第一幅图:∵S3=c2,S1=a2,S2=b2∴S1+S2=(a2+b2)=c2=S3;第二幅图:由圆的面积计算公式知:S3=,S2=,S1=,则S1+S2=+==S3;第三幅图:由等腰直角三角形的性质可得:S3=c2,S2=b2,S1=a2,则S3+S2=(a2+b2)=c2=S1.第四幅图:因为三个四边形都是正方形则:∴S3=BC2=c2,S2=AC2=b2,,S1=AB2=a2,∴S3+S2=a2+b2=c2=S1.故选:D.点睛:此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式.12、B【解析】
根据平均数和众数的概念求解.【详解】这组数据的平均数是:16(2+6+4+5+4+3)=4∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选B.【点睛】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(每题4分,共24分)13、8.【解析】
已知直线y=x+8与x轴、y轴分别交于A,B两点,可求得点A、B的坐标分别为:(8,0)、(0,8);又因C是OB的中点,可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16,解方程求得m=2,即可得点E(2,2),再根据S△OAE=×OA×yE即可求得的面积.【详解】∵直线y=x+8与x轴、y轴分别交于A,B两点,∴当x=0时,y=8;当y=0时,x=8,∴点A、B的坐标分别为:(8,0)、(0,8),∵C是OB的中点,∴点C(0,4),∴菱形的边长为4,则DE=4=DC,设点D(m,m+8),则点E(m,m+4),则CD2=m2+(m+8﹣4)2=16,解得:m=2,故点E(2,2),S△OAE=×OA×yE=×8×2=8,故答案为8.【点睛】本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.14、丙【解析】
方差反应了一组数据的波动情况,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定,据此进一步判断即可.【详解】∵,,,∴丙同学的方差最小,∴发挥最稳定的同学是丙,故答案为:丙.【点睛】本题主要考查了方差的意义,熟练掌握相关概念是解题关键.15、16或2【解析】
等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,
∴DC=AB=16,AD=BC=1.
分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.
∵四边形ABCD是矩形,
∴AB∥CD,∠A=90°
又GH∥AD,
∴四边形AGHD是平行四边形,又∠A=90°,
∴四边形AGHD是矩形,
∴AG=DH,∠GHD=90°,即B'H⊥CD,
又B'D=B'C,
∴DH=HC=,AG=DH=8,∵AE=3,
∴BE=EB'=AB-AE=16-3=13,
EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′=,
∴B'H=GH×GB'=1-12=6,
在Rt△B'HD中,由勾股定理得:B′D=
综上,DB'的长为16或2.故答案为:16或2【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.16、1【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.【详解】解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17、40°【解析】分析:平行四边形两组对边分别平行,两直线平行,同旁内角互补.又因为∠A,∠B的度数之比为2:1.所以可求得两角分别是40°,140°,根据平行四边形的两组对角分别相等,可得∠C等于40°.详解:∵ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠A+∠B=180°.又∵∠A,∠B的度数之比为2:1,∴∠A=180°×=40°,∠B=180°×=140°,∴∠C=40°.故答案为:40°.点睛:本题考查的是平行四变形的性质:平行四边形两组对边分别平行;平行四边形的两组对角分别相等.18、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.三、解答题(共78分)19、(1)必然;(2)15个;(3),理由见解析.【解析】
(1)根据题意即可判断为小明中奖是必然事件;(2)先求出抽白球的概率,乘以总球数即可得到袋中白球的数量;(3)先求出红球的个数,再用概率公式进行求解.【详解】(1)必然(2)24×=15(个)答:白球约有15个(3)红球有24×=3(个)总个数24-3=21(个)答:抽总一等奖的概率是【点睛】此题主要考查概率的计算,解题的关键是根据题意找到关系进行求解.20、(1)见解析;(1)①见解析,②1【解析】
(1)直接利用直角三角形斜边的中线等于斜边的一半,即可得出结论;(1)①延长CM交OB于T,先判断出△CDM≌△TBM得出CM=TM,DC=BT=OC,进而判断出△OAC≌△BAT,得出AC=AT,即可得出结论;②先利用等腰直角三角形的性质求出再求出OD,DC=CO=,再用勾股定理得出CT,进而判断出CM=AM,得出AM=OM,进而求出ON,再根据勾股定理求出MN,即可得出结论.【详解】解:(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,∴AM=BD,∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM=BD,∴AM=CM;(1)①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB==AB=4,在图①中,点D是OA的中点,∴OD=OA=1,∵△OCD是等腰直角三角形,∴DC=CO=ODsin45°==,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3,在Rt△OTC中,CT==1,∵CM=TM=CT==AM,∵OM是Rt△COT的斜边上的中线,∴OM=CT=,∴AM=OM,过点M作MN⊥OA于N,则ON=AN=OA=1,根据勾股定理得,MN==1,∴S△AOM=OA•MN=×4×1=1.【点睛】此题是几何变换综合题,主要考查了旋转的性质,直角三角形的性质,全等三角形的判定和性质,勾股定理及三角函数的应用,构造出全等三角形是解本题的关键.21、(1)1.6度;(2)1度;1度;(3)2.2度.【解析】
(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(1×3+10×1+11×1)÷5=1.6度;(2)1度出现了3次,最多,故众数为1度;第3天的用电量是1度,故中位数为1度;(3)总用电量为22×1.6×36=2.2度.22、(1);(2);(3)8个名额【解析】
(1)直接利用概率公式计算;(2)直接利用概率公式计算;(3)设还要争取甲类名额x个,利用概率公式得到,然后解方程求出x即可.【详解】(1)该班小明同学恰好抽到丙类名额的概率=;(2)该班小丽同学能有幸去参加实践活动的概率=;(3)设还要争取甲类名额x个,根据题意得,解得x=8,答:要求抽到甲类的概率要达到20%,则还要争取甲类名额8个.(1)【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.23、(1)420,30;(2)y=30x−60;(3)当客车行驶的时间x,⩽x⩽5时,客、货两车相距不大于30千米.【解析】
(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【详解】(1)由题意和图象可得,A,B两地相距:360+60=420千米,货车的速度=60÷2=30千米/小时,故答案为:420,30;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮制公文包市场发展前景分析及供需格局研究预测报告
- 便携式探照灯产品供应链分析
- 大数据分析及应用项目教程(Spark SQL)(微课版) 实训单 实训1 Hadoop集群环境搭建
- 光学阅读机产品供应链分析
- 外语学习书籍出版行业市场调研分析报告
- 云梯游乐设施产品供应链分析
- 临时性商业管理行业经营分析报告
- 废物化学处理行业经营分析报告
- 电动和非电动洁面刷商业机会挖掘与战略布局策略研究报告
- 主要负责人年度安全生产工作述职报告
- 2025年高考语文复习备考复习策略讲座
- 2024年中国具身智能行业研究:知行合一拥抱AI新范式-19正式版
- 数字中国发展报告(2023年)
- 《理解与尊重》主题班会
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 金华市金投集团有限公司招聘笔试题库2024
- 中国中煤笔试
- 人教版pep五上《Unit 4 What can you do》说课稿
- 4.2+在实践中追求和发展真理 课件 高中政治统编版 必修四 哲学与文化
- Chat GPT 科普知识讲解
- 山西退役军人事务厅事业单位笔试真题2024
评论
0/150
提交评论