版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽安庆八年级数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.222.已知点P(a,1)不在第一象限,则点Q(0,﹣a)在()A.x轴正半轴上 B.x轴负半轴上C.y轴正半轴或原点上 D.y轴负半轴上3.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC4.在平面直角坐标系中,点A坐标为(2,2),点P在x轴上运动,当以点A,P、O为顶点的三角形为等腰三角形时,点P的个数为()A.2个 B.3个 C.4个 D.5个5.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE6.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A. B. C.2 D.37.将不等式<2的解集表示在数轴上,正确的是()A. B.C. D.8.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形9.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A.6米 B.3米 C.6米 D.3米10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为()A.= B.= C.= D.=二、填空题(每小题3分,共24分)11.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.12.为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时的众数是_____.13.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于_____.14.已知,则代数式的值为_____.15.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____16.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.17.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.18.一组数据3、4、5、5、6、7的方差是.三、解答题(共66分)19.(10分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?20.(6分)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.21.(6分)如图,在四边形ABCD中,,,,,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转得到PQ,过A点,D点分别作BC的垂线,垂足分别为M,N.求AM的值;连接AC,若P是AB的中点,求PE的长;若点Q落在AB或AD边所在直线上,请直接写出BP的长.22.(8分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于______;(2)请你将②的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?23.(8分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等:③当x<1时,y1<y2;④直线y1=2x与直线y2=﹣2x+4在平面直角坐标系中的位置关系是平行.其中正确的个数有()个.A.4 B.3 C.2 D.124.(8分)如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.25.(10分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.26.(10分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.(1)如图1,当点与点重合时,求的长;(2)设,,求与的函数关系式,并写出定义域;(3)如图2,联结,当是等腰三角形时,求的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.2、C【解析】
根据题意得出a的取值范围,进而得出答案.【详解】解:∵点P(a,1)不在第一象限,∴a≤0,则﹣a≥0,故点Q(0,﹣a)在:y轴正半轴上或原点.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3、C【解析】
通过构造相似三角形即可解答.【详解】解:根据题意可得在△ABC中△ABC∽△MNC,又因为M.N是AC,BC的中点,所以相似比为2:1,MN//AB,B正确,CM=AC,D正确.即AB=2MN=36,A正确;MN=AB,C错误.故本题选C.【点睛】本题考查相似三角形的判定与运用,熟悉掌握是解题关键.4、C【解析】
先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.【详解】如图,当OA=OP时,可得P1、P2满足条件,当OA=AP时,可得P3满足条件,当AP=OP时,可得P4满足条件,故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键.5、B【解析】试题分析:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∵CF∥BD,∴四边形BCFD是平行四边形,∴DF=BC,CF=BD,∴EF=DF-DE=BC-DE=BC=DE.故选B.点睛:本题考查了三角形中位线定理和平行四边形的判定与性质,得出四边形BCFD是平行四边形是解决此题的关键.6、A【解析】
根据全等三角形的判定先求证△ADO≌△DEH,然后再根据等腰直角三角形中等边对等角求出∠ECH=45°,再根据点在一次函数上运动,作OE′⊥CE,求出OE′即为OE的最小值.【详解】解:如图,作EH⊥x轴于H,连接CE.∵∠AOD=∠ADE=∠EHD=90°,∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ADO=∠DEH,∵AD=DE,∴△ADO≌△DEH(AAS),∴OA=DH=OC,OD=EH,∴OD=CH=EH,∴∠ECH=45°,∴点E在直线y=x﹣3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,∵OC=3,∴OE′=,∴OE的最小值为.故选:A.【点睛】全等三角形的判定和性质、等腰三角形的性质和垂线段最短的公理都是本题的考点,熟练掌握基础知识并作出辅助线是解题的关键.7、D【解析】
先解不等式得到解集,然后利用数轴上的表示方法即可完成解答.【详解】解:解不等式<2得:x<1;根据不等式解集在数轴上的表示方法,得:,故答案为D.【点睛】本题考查了解不等式及其在数轴上表示解集;其中掌握在数轴上表示解集的方法是解题的关键,即:在表示解集时,“≥”和“≤”要用实心圆点表示;“<”和“>”要用空心圆点表示.8、C【解析】
根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【详解】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.9、C【解析】
由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.【点睛】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.10、C【解析】
根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【详解】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:C.【点睛】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.二、填空题(每小题3分,共24分)11、2.5【解析】试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,DE=DM∠EDF=∠FDM∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=52,∴FM=5考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.12、1.【解析】
众数是一组数据中出现次数最多的数据,根据众数的定义就可以求出.【详解】在这一组数据中1出现了8次,出现次数最多,因此这组数据的众数为1.故答案为1.【点睛】本题属于基础题,考查了确定一组数据的众数的能力.要明确定义.13、1【解析】
作PE⊥OA于E,根据三角形的外角的性质得到∠ACP=30°,根据直角三角形的性质得到PE=PC=1,根据角平分线的性质解答即可.【详解】作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=1,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、3【解析】
把已知值代入,根据二次根式的性质计算化简,灵活运用完全平方公式.【详解】解:因为所以【点睛】二次根式的化简求值.15、x<﹣1.【解析】
以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.【详解】解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),∴不等式-2x>ax+3的解集为x<-1.故答案为x<-1.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、1.【解析】
根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、1、1、10、10,
所以这组数据的中位数为=1.
故答案为:1.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.17、(3,1).【解析】∵四边形ABCD为平行四边形.∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,∴C(3,1).18、【解析】
首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:
平均数
=(3+4+5+5+6+7)÷6=5
数据的方差
S2=[(3-5)2+(4-5)2+(5-5)2+(5-5)2+(6-5)2+(7-5)2]=
故答案为
.三、解答题(共66分)19、当人数为17至25人之间时,选择甲;当人数为16人时,甲乙相同;当人数为10至15人时,选乙.【解析】
设人数为x,则可得,从而可得甲旅行社需要花费:0.75×200x=150x(元),乙旅行社:0.8×200(x-1)=(160x-160)(元),然后分三种情况讨论.【详解】解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x-1)=(160x-160)(元).①当150x<160x-160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x-160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x-160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.点睛:本题考查了一元一次不等式的应用,做题的关键是能根据人数选择旅行社.本题需注意要根据已知条件先列出甲、乙两旅行社的费用,因为该单位人数不定,所以比较两旅行社的费用求出确定该单位人数范围时应选择哪家旅行社.20、(1)P(,2);(2)(,2)或(﹣,2)【解析】
(1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为y=x,设P(m,m),根据S△POB=S矩形OBCD,列方程即可得到结论;(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.【详解】(1)如图:∵矩形OBCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=,∴直线OC的解析式为y=x,∵点P在矩形的对角线OC上,∴设P(m,m),∵S△POB=S矩形OBCD,∴5×m=3×5,∴m=,∴P(,2);(2)∵S△POB=S矩形OBCD,∴设点P的纵坐标为h,∴h×5=5,∴h=2,∴点P在直线y=2或y=﹣2上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n=,∴直线OE的解析式为y=x,当y=2时,x=,∴P(,2),同理,点P在直线y=﹣2上,P(,﹣2),∴点P的坐标为(,2)或(﹣,2).【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.21、(1)12;(2)10;(3)PB的值为或.【解析】
作等腰梯形的双高,把问题转化为矩形,全等三角形即可解决问题;如图2中,连接利用勾股定理求出AC,再利用三角形的中位线定理求出PE;分两种情形分别讨论求解即可解决问题.【详解】如图1中,作用M,于N.,,,四边形AMND是矩形,,,≌,,,,,,如图2中,连接AC.在中,,,,,如图3中,当点Q落在直线AB上时,∽,,,.如图4中,当点Q在DA的延长线上时,作交DA的延长线于H,延长HP交BC于G.设,则.,,,,,≌,,,.综上所述,满足条件的PB的值为或.【点睛】本题考查四边形综合题、等腰梯形的性质、全等三角形的判定和性质、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.22、(1)144°;(2)乙校得8分的学生的人数为3人,据此可将图②的统计图补充完整如图③见解析;(3)从平均分和中位数的角度分析乙校成绩较好;(4)应选甲校.【解析】
(1)观察图①、图②,根据10分的人数以及10分的圆心角的度数可以求出乙校参赛的人数,然后再用360度乘以“7分”学生所占的比例即可得;(2)求出8分的学生数,据此即可补全统计图;(3)先求出甲校9分的人数,然后利用加权平均数公式求出甲校的平均分,根据中位数概念求出甲校的中位数,结合乙校的平均分与中位数进行分析作出判断即可;(4)根据两校的高分人数进行分析即可得.【详解】(1)由图①知“10分”的所在扇形的圆心角是90度,由图②知10分的有5人,所以乙校参加英语竞赛的人数为:5÷=20(人),所以“7分”所在扇形的圆心角=360°×=144°,故答案为:144;(2)乙校得8分的学生的人数为(人),补全统计图如图所示:(3)由(1)知甲校参加英语口语竞赛的学生人数也是20人,故甲校得9分的学生有(人),所以甲校的平均分为:(分),中位数为7分,而乙校的平均数为8.3分,中位数为8分,因为两校的平均数相同,但甲校的中位数要低于乙校,所以从平均分和中位数的角度分析乙校成绩较好;(4)选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.【点睛】本题考查了条形统计图和扇形统计图的综合运用,中位数等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、B【解析】
联立y1=2x,y2=-2x+4解方程组可得A点坐标,然后把x=1代入两个函数解析式可得当x=1时,y1=2,y2=2;画出两函数图象可从图象上得到当x<1时,y1<y2;直线y1=2x与直线y2=2x-4不平行.【详解】联立y1=2x,y2=−2x+4得,解得:,∴点A的坐标为(1,2),故①正确;当x=1时,y1=2,y2=2,故②正确;如图:当x<1时,y1<y2故③正确;直线y1=2x与直线y2=2x−4不平行,故④错误;故选:B.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业社会责任国际认证申请服务行业市场调研分析报告
- 装配用钳项目运营指导方案
- 反射疗法服务行业经营分析报告
- 商标监控法律服务行业相关项目经营管理报告
- 度假屋出租行业营销策略方案
- 公共汽车包租行业经营分析报告
- 婴儿车专用包产品供应链分析
- 复印机产业链招商引资的调研报告
- 手持纸带喷射器产业链招商引资的调研报告
- 互惠基金经纪行业相关项目经营管理报告
- 期中综合检测(1-4单元)(试题)- 2024-2025学年二年级上册数学人教版
- 2024年消防宣传月知识竞赛考试题库500题(含答案)
- 国开2024年秋《机电控制工程基础》形考任务1答案
- 中国邮政社招笔试题库
- 食品安全工作操作流程(5篇)
- 《中华民族大团结》(初中)-第10课-伟大梦想-共同追求-教案
- 《非计划性拔管》课件
- 二十四节气课件:《立冬》
- 送货单电子模板
- 七年级书法PPT课件
- 三室两厅房屋装修材料清单
评论
0/150
提交评论