版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市长城中学2024年数学八年级下册期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列函数中,随的增大而减少的函数是()A. B. C. D.2.若,则下列各不等式不一定成立的是()A. B. C. D.3.如图,中,,,则的度数为()A. B. C. D.4.学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()甲乙丙丁平均分94989896方差11.211.8A.甲 B.乙 C.丙 D.丁5.若函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为()A.x<2 B.x>2 C.x≤2 D.x≥26.如图,,下列条件中不能使的是()A. B. C. D.7.某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙9.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m10.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数 B.平均数 C.众数 D.方差11.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15 D.∠C=∠A﹣∠B12.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)14.面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是_______.15.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_______.16.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?17.如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.18.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.三、解答题(共78分)19.(8分)近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:初一年级8858449071889563709081928484953190857685初二年级7582858576876993638490856485919668975788(整理数据)按如下分段整理样本数据:分段年级0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100初一年级a137b初二年级14285(分析数据)对样本数据边行如下统计:统计量年级平均数中位数众数方差初一年级78c90284.6初二年级8185d126.4(得出结论)(1)根据统计,表格中a、b、c、d的值分别是、、、.(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有人.(3)根据以上数据,你认为(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).20.(8分)(1)操作思考:如图1,在平面直角坐标系中,等腰直角的直角顶点在原点,将其绕着点旋转,若顶点恰好落在点处.则①的长为______;②点的坐标为______(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角如图放置,直角顶点,点,试求直线的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点,过点作轴,垂足为点,作轴,垂足为点是线段上的一个动点,点是直线上一动点.问是否存在以点为直角顶点的等腰直角,若存在,请直接写出此时点的坐标,若不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB=3:4.(1)求直线l的表达式;(2)点P是轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标.22.(10分)分解因式:3a2b﹣12ab+12b.23.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,AC=4.5cm.M是边AC上的一个动点,连接MB,过点M作MB的垂线交AB于点N.设AM=xcm,AN=ycm.(当点M与点A或点C重合时,y的值为0)探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:x/cm00.511.522.533.544.5y/cm00.40.81.21.61.71.61.20(要求:补全表格,相关数值保留一位小数)(2)建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AN=AM时,AM的长度约为cm(结果保留一位小数).24.(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.25.(12分)已知△ABC,AB=AC,D为BC上一点,E为AC上一点,AD=AE.(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=°.(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=°,∠CDE=°.(3)设∠BAD=α,∠CDE=β猜想α,β之间的关系式,并说明理由.26.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,32(1)直接写出B、C、D三点的坐标;(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=kx(
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.【详解】A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,D选项y=-2x+8中,k=-2<0,y随x的增大而减少.故选D.【点睛】本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.2、D【解析】
根据不等式的性质逐个判断即可.【详解】A、∵,
∴,故本选项不符合题意;
B、∵,
∴,故本选项不符合题意;
C、∵,
∴,故本选项不符合题意;
D、∵,
∴,故本选项符合题意;
故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3、B【解析】
设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
∴∠B+19°=x+14°,
∴∠B=x-5°,
∵AB=AC,
∴∠C=∠B=x-5°,
∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
∵AD=DE,
∴∠DEA=∠DAE=x+9°,
在△ADE中,由三角形内角和定理可得
x+x+9°+x+9°=180°,
解得x=54°,即∠ADE=54°,
∴∠DAE=63°
故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.4、C【解析】
先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【详解】乙、丙同学的平均数比甲、丁同学的平均数大,应从乙和丙同学中选,丙同学的方差比乙同学的小,丙同学的成绩较好且状态稳定,应选的是丙同学;故选:.【点睛】主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.5、A【解析】
根据函数y=kx+b的图象可以判断,要使y>0,即图象在x轴的上方,此时对应x的取值范围即为不等式kx+b>0的解集.【详解】∵函数y=kx+b过点,即当y=0时,x=2,由图象可知x<2时,函数图象在x轴的上方,即此时y>0,∴不等式kx+b>0的解集为x<2,故选:A.【点睛】考查了一次函数的图象和性质,数形结合的方法求解一次不等式的解集,熟练掌握函数的图象和性质以及和对应的一次不等式之间的关系是解题关键.6、D【解析】
根据条件和图形可得∠1=∠2,AD=AD,再根据全等三角形的判定定理分别添加四个选项所给条件进行分析即可.【详解】解:根据条件和图形可得∠1=∠2,AD=AD,
A、添加可利用SAS定理判定,故此选项不合题意;
B、添加可利用AAS定理判定,故此选项不合题意;
C、添加可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加不能判定,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、C【解析】试题分析:设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程10.8(1+x)2=16.8,故选C.考点:由实际问题抽象出一元二次方程8、B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、C【解析】
利用勾股定理求出门框对角线的长度,由此即可得出结论.【详解】解:如图,门框的对角线长为:=2.5m,所以能通过门框的木板的最大宽度为2.5m,故选C.【点睛】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.10、A【解析】
根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.11、C【解析】
根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;
B、∵32+42=52,∴△ABC为直角三角形;
C、∵∠A:∠B:∠C=9:12:15,,故不能判定△ABC是直角三角形;
D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;
故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.12、B【解析】
根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.二、填空题(每题4分,共24分)13、②①④⑤③【解析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.14、84分【解析】
根据加权平均数的计算公式进行计算,即可得出答案.【详解】根据题意得:90×20%+80×40%+85×40%=84(分);故答案为84分.【点睛】本题考查的是加权平均数,熟练掌握加权平均数的计算公式是解题的关键.15、.【解析】
根据众数为1,求出a的值,然后根据平均数的概念求解:∵众数为1,∴a=1.∴平均数为:.考点:1.众数;2.平均数.16、8【解析】
根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.【详解】解:设:在甲机换了x次.乙机换了y次.丙机换了z次.在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴由②-①,得:2y+8z=68,∴y+4z=34,∴y=34-4z,结合x+y+z=12,能满足上面两式的值为:∴;即在丙机换了8次.故答案为:8.【点睛】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.17、1【解析】
想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.【详解】解:∵四边形AEFG是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=1°
故答案为:1.【点睛】本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.18、1【解析】
先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.【详解】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100-30=70名,∴全校持“赞成”意见的学生人数约=2400×70100故答案为:1.【点睛】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.三、解答题(共78分)19、(1)3、6、84.5、85;(2)490;(3)“初二”,理由详见解析.【解析】
(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;(2)用样本估计总体,得到答案;(3)根据平均数的性质解答.【详解】解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,故答案为:3;6;84.5;85;(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),初二成绩90分以上(含90分)的人数共有1000×=250(人),240+250=490(人),故答案为:490;(3)“初二”学生的体育整体水平较高,原因是:初二年级的平均数大于初一年级的平均数,故答案为:“初二”.【点睛】本题考查了数据的统计与分析,熟知平均数、中位数、众数、方差等的实际意义是解题的关键.20、(1);(2);(3)【解析】
(1)根据勾股定理可得OA长,由对应边相等可得B点坐标;(2)通过证明得出点B坐标,用待定系数法求直线的函数表达式;(3)设点Q坐标为,可通过证三角形全等的性质可得a的值,由Q点坐标可间接求出P点坐标.【详解】解:(1)如图1,作轴于F,轴于E.由A点坐标可知在中,根据勾股定理可得;为等腰直角三角形轴于F,轴于E又所以B点坐标为:(2)如图,过点作轴.为等腰直角三角形轴又∴,∴,∴.设直线的表达式为将和代入,得,解得,∴直线的函数表达式.(3)如图3,分两种情况,点Q可在x轴下方和点Q在x轴上方设点Q坐标为,点P坐标为当点Q在x轴下方时,连接,过点作交其延长线于M,则M点坐标为为等腰直角三角形又由题意得,解得,所以当点Q在x轴上方时,连接,过点作交其延长线于N,则N点坐标为同理可得,由题意得,解得,所以综上的坐标为:.【点睛】本题是一次函数与三角形的综合,主要考查了一次函数解析式、全等三角形的证明及性质,灵活运用全等的性质求点的坐标是解题的关键.21、(1)y=+4(2)(3,5)或(3,)【解析】
(1)首先根据已知条件以及勾股定理求得OA、OB的长度,即求得A、B的坐标,利用待定系数法即可求解;(2)分P在B点的上边和在B的下边两种情况画出图形进行讨论,求得Q的坐标.【详解】(1)∵OA:OB=3:4,AB=5,∴根据勾股定理,得OA=3,OB=4,∵点A、B在x轴、y轴上,∴A(3,0),B(0,4),设直线l表达式为y=kx+b(k≠0),∵直线l过点A(3,0),点B(0,4),∴,解得,∴直线l的表达式为y=+4;(2)如图,当四边形BP1AQ1是菱形时,则有BP1=AP1=AQ1,则有OP1=4-BP1,在Rt△AOP1中,有AP12=OP12+AO2,即AQ12=(4-AQ1)2+32,解得:AQ1=,所以Q1的坐标为(3,);当四边形BP2Q2A是菱形时,则有BP2=AQ2=AB=5,所以Q2的坐标为(3,5),综上所述,Q点的坐标是(3,5)或(3,).【点睛】本题考查了一次函数的性质、勾股定理、菱形的判定与性质,熟练掌握待定系数法、运用分类讨论与数形结合思想是解题的关键.22、3b(a﹣1)1.【解析】
首先提取公因式3b,再利用完全平方公式分解因式得出答案.【详解】原式=3b(a1﹣4a+4)=3b(a﹣1)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23、(1)1.1;(2)详见解析;(3)3.1.【解析】
(1)如图,作辅助线:过N作NP⊥AC于P,证明△NPM∽△MCB,列比例式可得结论;
(2)描点画图即可;
(3)同理证明△NPM∽△MCB,列比例式,解方程可得结论.【详解】解:(1)如图,过N作NP⊥AC于P,
Rt△ACB中,∠CAB=30°,AC=1.5cm.
∴BC=
当x=2时,即AM=2,
∴MC=2.5,
∵∠NMB=90°,
易得△NPM∽△MCB,
∴=,
设NP=5a,PM=9a,则AP=15a,AN=10a,
∵AM=2,
∴15a+9a=2,
a=,
∴y=AN=10×1.73×≈1.1;x/cm00.511.522.533.511.5y/cm00.10.81.21.11.61.71.61.20故答案为1.1;(2)如图所示:(3)设PN=a,则AN=2a,AP=a,∵AN=AM,∴AM=1a,
如图,由(1)知:△NPM∽△MCB,
∴,即,
解得:a≈0.81,∴AM=1a=1×0.81=3.36≈3.1(cm).
故答案为(1)1.1;(2)详见解析;(3)3.1.【点睛】本题是三角形与函数图象的综合题,主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,函数图象的画法,直角三角形的性质,勾股定理,并与方程相结合,计算量比较大.24、(1)EF=6﹣;(2)见解析【解析】
(1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=6,构建方程求出x,证明EF=BF,求出BF即可解决问题.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是菱形,∵AB=BC=CD=AD=6,AD∥BC,∴∠ABC=180°﹣∠BAD=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACE=15°,∴∠ECG=∠ACB﹣∠ACE=45°,∵EG⊥CG,∴∠EGC=90°,∴EG=CG,设BG=x,则EG=CG=x,∴x+x=6,∴x=3﹣3,∵四边形ABCD是菱形,∴∠FBG=∠EBF=30°,∵∠BEG=30°,∴FB=FE,∵BF===6﹣,∴EF=6﹣.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.∵EG⊥BC,MC⊥BC,∴EF∥CM,∴∠FEH=∠HCM,∵∠EHF=∠CHM,EH=CH,∴△EFH≌△CMH(ASA),∴EF=CM,FH=HM,∵EF=BF,∴BF=CM,∵∠ABF=∠ACM=30°,BA=CA,∴△BAF≌△CAM(SAS),∴AF=AM,∠BAF=∠CAM,∴∠FAM=∠BAC=60°,∴△FAM是等边三角形,∵FH=HM,∴AH⊥FM,∠FAH=∠FAM=×60°=30°,∴AF=2FH.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度矿产资源开发与合作合同
- 2024业务员合同协议书范本
- 2024表演合作合同范本
- 个人土地使用权部分转让协议
- 个人小额贷款合同协议书
- 广东省外地职工劳动合同模板
- 2024个人借款担保合同范本「标准版」
- 买卖合同因质量问题的反诉状2024年
- 婚内财产划分:债务承担约定
- 2024年私人装修工人简单合同
- 2024年国际货物买卖FOB条款合同
- 华南理工大学《嵌入式系统》2022-2023学年期末试卷
- 江苏省中等职业学校学业水平考试语文卷含答案
- 2024-2025学年二年级上学期数学期中模拟试卷(苏教版)(含答案解析)
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 电影的声音分析PPT课件
- “三措一案”实施规范标准
- 【全面解读《国有建设用地使用权出让地价评估技术规范【2018】4号文》
- 案件移交清单模板
- 等差数列及其通项公式
- 【土木工程本科毕业设计】《混凝土结构》课程设计
评论
0/150
提交评论