2024年上海市民办新竹园中学八年级数学第二学期期末检测试题含解析_第1页
2024年上海市民办新竹园中学八年级数学第二学期期末检测试题含解析_第2页
2024年上海市民办新竹园中学八年级数学第二学期期末检测试题含解析_第3页
2024年上海市民办新竹园中学八年级数学第二学期期末检测试题含解析_第4页
2024年上海市民办新竹园中学八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年上海市民办新竹园中学八年级数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是()A.垂直 B.相等 C.平分 D.平分且垂直2.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为()A.4cm2 B.6cm2 C.8cm2 D.9cm23.若点P(1-m,-3)在第三象限,则m的取值范围是()A.m<1 B.m<0 C.m>0 D.m>14.若a≤1,则(1-a)3A.(a-1)a-1 B.(1-a)a-1 C.(a-1)5.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和46.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块 B.153块 C.154块 D.155块7.七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,则有()A.c>b>a B.b>c>a C.c>a>b D.a>b>c8.满足下列条件的,不是直角三角形的是()A. B.C. D.9.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A. B.C. D.10.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A. B.1 C. D.611.有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为()A.1B.2C.3D.412.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是()A.18和18 B.19和18 C.20和18 D.20和19二、填空题(每题4分,共24分)13.1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.14.如图,点是函数的图象上的一点,过点作轴,垂足为点.点为轴上的一点,连结、.若的面积为,则的值为_________.15.如图,已知是等边三角形,点在边上,以为边向左作等边,连结,作交于点,若,,则________.16.如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17.如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.18.如图,直线(>0)与轴交于点(-1,0),关于的不等式>0的解集是_____________.三、解答题(共78分)19.(8分)如图,△ABC中,A(﹣1,1),B(﹣4,2),C(﹣3,4).(1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;(2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;(3)在x轴上找一点P使PA+PB的值最小请直接写出点P的坐标.20.(8分)某书店以每本21元的价格购进一批图书,若每本图书售价a元,则每周可卖出(350﹣10a)件,但物价局限定每本图书的利润率不得超过20%,该书店计划“五一”黄金周要盈利400元.问需要购进图书多少本?21.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题(1)表中=,=;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?22.(10分)临近期末,历史老师为了了解所任教的甲、乙两班学生的历史基础知识背诵情况,从甲、乙两个班学生中分别随机抽取了20名学生来进行历史基础知识背诵检测,满分50分,得到学生的分数相关数据如下:甲3235462341493741364137443946464150434449乙2534434635414246444247454234394749484542通过整理,分析数据:两组数据的平均数、中位数、众数如下表:平均数(分)中位数(分)众数(分)甲4141乙41.842历史老师将乙班成绩按分数段(,,,,,表示分数)绘制成扇形统计图,如图(不完整)请回答下列问题:(1)_______分;(2)扇形统计图中,所对应的圆心角为________度;(3)请结合以上数据说明哪个班背诵情况更好(列举两条理由即可).23.(10分)如图,正方形网格中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,已知△ABC的三个顶点都是格点,请按要求画出三角形.(1)将△ABC先上平移1个单位长度再向右平移2个单位长度,得到△A'B'C';(2)将△A'B'C'绕格点O顺时针旋转90°,得到△A''B''C''.24.(10分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个面积为12的平行四边形。25.(12分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB=,BC=,AC=;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.26.如图,平行四边形ABCD中,点E、F分别是AD、BC的中点

参考答案一、选择题(每题4分,共48分)1、D【解析】

先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.【详解】解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选D.【点睛】本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.2、A【解析】试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△CEF=3S△EFH,∴S△CEF=3S△DGF,∴S△DGF=×12=4(cm2).故选A.考点:三角形中位线定理.3、D【解析】

根据第三象限内点的横坐标是负数列不等式求解即可.【详解】解:∵点P(1−m,−3)在第三象限,∴1−m<0,解得m>1.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4、D【解析】

将(1﹣a)3化为(1﹣a)2•(1﹣a),利用二次根式的性质进行计算即可.【详解】若a≤1,有1﹣a≥0;则(1-a)3=(1-a)2故选D.【点睛】本题考查了二次根式的意义与化简.二次根式a2规律总结:当a≥0时,a2=a;当a≤0时,5、D【解析】

先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.6、C【解析】

根据题意设出未知数,列出相应的不等式,从而可以解答本题.【详解】解:设这批手表有x块,

解得,

这批手表至少有154块,

故选C.【点睛】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.7、D【解析】

根据将所有数据加在一起除以数据的个数就能得到该组数据的平均数;排序后找到中间两数的平均数即为该组数据的中位数;观察后找到出现次数最多的数即为该组数据的众数,即可求出答案.【详解】该组数据的平均数为:a=(150+140+100+110+130+110+120)÷7=122.86,

将该组数据排序为:100,110,110,120,130,140,150,

该组数据的中位数为:b=120;

该组数据中数字110出现了2次,最多,

该组数据的众数为:c=110;

则a>b>c;

故选D.【点睛】本题考查众数、算术平均数和中位数,解题的关键是掌握众数、算术平均数和中位数的求解方法.8、C【解析】

根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【详解】A.,则a2+c2=b2,△ABC是直角三角形,故A正确,不符合题意;B.52+122=132,△ABC是直角三角形,故B正确,不符合题意;C.∠A:∠B:∠C=3:4:5,设∠A、∠B、∠C分别为3x、4x、5x,则3x+4x+5x=180°,解得,x=15°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故C选项错误,符合题意;D.∠A-∠B=∠C,则∠A=∠B+∠C,∠A=90°,△ABC是直角三角形,故D正确,不符合题意;故选C.【点睛】本题考查的是三角形内角和定理、勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、D【解析】

解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.10、C【解析】试题解析:∵D、E分别是AB、AC上点,DE//BC,∴∵AD=2,DB=1,AE=3,∴故选C.11、C【解析】因为72+242=252;122+162=202;92+402=412;42+62≠82;(32)2+(42)2≠(52)2,所以能组成直角三角形的个数为3个.故选C.本题主要考查了勾股定理的逆定理,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,已知一个三角形三边的长,常用勾股定理的逆定理判断这个三角形是否是直角三角形.12、B【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.故选:B.【点睛】本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.二、填空题(每题4分,共24分)13、6174【解析】

用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.【详解】解:用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,

用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,

用6354的四个数字由大到小重新排列成一个四位数3.则3-3456=3087,

用3087的四个数字由大到小重新排列成一个四位数4.则4-378=8352,

用8352的四个数字由大到小重新排列成一个四位数5.则5-2358=6174,

用6174的四个数字由大到小重新排列成一个四位数6.则6-1467=6174…

可知7次变换之后,四位数最后都会停在一个确定的数6174上.

故答案为6174.【点睛】本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.14、【解析】

连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图∵AB⊥y轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8故答案为﹣8【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15、【解析】

证明△BAE≌△CAD得到,从而证得,再得到AEBF是平行四边形,可得AE=BF,在三角形BCF中求出BF即可.【详解】作于H,∵是等边三角形,,BC=AC=6在中,CF=4,∵是等边三角形,是等边三角形AC=AB,AD=AE,∵AEBF是平行四边形AE=BF=【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16、6【解析】分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行

,

AB

CD,AD

BC

,∴

四边形

ABCD

是平行四边形,∵

两张纸条的宽度都是

3

,∴S四边形ABCD=AB×3=BC×3

,∴AB=BC

,∴

平行四边形

ABCD

是菱形,即四边形

ABCD

是菱形.如图

,

A

AE⊥BC,

垂足为

E,

∵∠ABC=60∘

,∴∠BAE=90°−60°=30°,∴AB=2BE

,在

△ABE

,AB2=BE2+AE2

,即

AB2=AB2+32

,解得

AB=,∴S四边形ABCD=BC⋅AE=×3=.故答案是:.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17、8P1(0,-4),P2(-4,-4),P3(4,4)【解析】

解:如图∵△AOE的面积为4,函数y=的图象过一、三象限,∴S△AOE=•OE•AE=4,∴OE•AE=8,∴xy=8,∴k=8,∵函数y=2x和函数y=的图象交于A、B两点,∴2x=,∴x=±2,当x=2时,y=4,当x=-2时,y=-4,∴A、B两点的坐标是:(2,4)(-2,-4),∵以点B、O、E、P为顶点的平行四边形共有3个,∴满足条件的P点有3个,分别为:P1(0,-4),P2(-4,-4),P3(4,4).故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).【点睛】本题考查反比例函数综合题.18、x>-1【解析】

先根据一次函数y=ax+b的图象交x轴交于点(-1,0)可知,当x>-1时函数图象在x轴的上方,故可得出结论.【详解】∵直线y=ax+b(a>0)与x轴交于点(-1,0),由函数图象可知,当x>-1时函数图象在x轴的上方,∴ax+b>0的解集是x>-1.故答案为:x>-1.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)(-1,0),图见解析【解析】

(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)作点关于x轴的对称点A′,连接BA′交X轴于点P,点P即为所求.【详解】(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)点P即为所求.【点睛】本题考查作图﹣旋转变换,平移变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识.20、需要购进图书2本.【解析】

根据总利润=每本利润×销售数量,可得出关于a的一元二次方程,解之可得出a的值,结合利润率不得超过20%可确定a值,再将其代入350﹣10a中即可求出结论.【详解】解:依题意,得:(a﹣21)(350﹣10a)=400,整理,得:a2﹣56a+775=0,解得:a1=25,a2=1.∵21×(1+20%)=25.2,∴a2=1不合题意,舍去,∴350﹣10a=350﹣10×25=2.答:需要购进图书2本.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、(1)8,20(2)见解析(3)330人【解析】

(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;

(2)根据(1)中b的值可以将频数分布直方图补充完整;

(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.【详解】(1)由频数分布直方图可知,a=8,

b=50-8-12-10=20,

故答案为:8,20;

(2)由(1)知,b=20,

补全的频数分布直方图如图所示;(3)550×=330(人),

答:该年级学生立定跳远成绩优秀的学生有330人.【点睛】本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22、(1)(2)(3)见解析【解析】

(1)利用中位数的定义确定的值即可;(2)用40≤x<45范围内的人数除以总人数乘以周角的度数即可;(3)利用平均数、中位数的意义列举即可.【详解】解:(1)∵共20人,∴中位数是第10或11人的平均数,为42分和43分,即:,故答案为:42.5;(2)两组中40≤x<45共有7+7=14人,所以40≤x<45的圆心角为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论