




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省牡丹区王浩屯镇初级中学2024年八年级数学第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,直线经过第二、三、四象限,的解析式是,则的取值范围在数轴上表示为().A. B.C. D.2.于反比例函数y=2x的图象,下列说法中,正确的是(A.图象的两个分支分别位于第二、第四象限B.图象的两个分支关于y轴对称C.图象经过点(1,1)D.当x>0时,y随x增大而减小3.下列事件中必然事件有()①当x是非负实数时,x≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个 B.2个 C.3个 D.4个4.如图,正方形中,,连接交对角线于点,那么()A. B. C. D.5.如图,在菱形ABCD中,对角线AC,BD交于点O,AO=3,∠ABC=60°,则菱形ABCD的面积是()A.18 B.183 C.36 D.3636.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.7.当x=1时,下列式子无意义的是()A.13x B.2xx+1 C.18.下面式子是二次根式的是()A.a2+1 B.333 C.-19.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>010.如图,在正方形外取一点,连接、、,过点作的垂线交于点.若,,下列结论:①;②;③点到直线的距离为;④;⑤正方形.其中正确的是()A.①②③④ B.①②④⑤ C.①③④ D.①②⑤11.为了贯彻总书记提出的“精准扶贫”战略构想,铜仁市2017年共扶贫261800人,将261800用科学记数法表示为()A.2.618×105 B.26.18×104 C.0.2618×106 D.2.618×10612.下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的面积相等C.两直线平行,内错角相等 D.等边三角形是等腰三角形二、填空题(每题4分,共24分)13.把方程x2+4xy﹣5y2=0化为两个二元一次方程,它们是_____和_____.14.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:植树株数(株)
5
6
7
小组个数
3
4
3
则这10个小组植树株数的方差是_____.15.如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.16.经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.17.如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为.18.关于x的方程的一个根为1,则m的值为.三、解答题(共78分)19.(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.20.(8分)如图,已知ABC,利用尺规在AC边上求作点D,使AD=BD(保留作图痕迹,不写作法)21.(8分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.22.(10分)已知,在菱形ABCD中,G是射线BC上的一动点(不与点B,C重合),连接AG,点E、F是AG上两点,连接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.(1)若点G在边BC上,如图1,则:①△ADE与△BAF______;(填“全等”或“不全等”或“不一定全等”)②线段DE、BF、EF之间的数量关系是______;(2)若点G在边BC的延长线上,如图2,那么上面(1)②探究的结论还成立吗?如果成立,请给出证明;如果不成立,请说明这三条线段之间又怎样的数量关系,并给出你的证明.23.(10分)如图,矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2).24.(10分)如图,的对角线相交于点,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.25.(12分)计算或化简:(1)计算:(2)先化简,再求值:,其中.26.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产种产品的件数为(件),生产、两种产品所获总利润为(元)(1)试写出与之间的函数关系式:(2)求出自变量的取值范围;(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据一次函数图象与系数的关系得到m-2<1且n<1,解得m<2,然后根据数轴表示不等式的方法进行判断.【详解】∵直线y=(m-2)x+n经过第二、三、四象限,∴m-2<1且n<1,∴m<2且n<1.故选C.【点睛】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).也考查了在数轴上表示不等式的解集.2、D【解析】
根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【详解】:A.∵k=2>0,∴它的图象在第一、三象限,故A选项错误;B.图象的两个分支关于y=-x对称,故B选项错误;C.把点(1,1)代入反比例函数y=2x得2≠1,故D.当x>0时,y随x的增大而减小,故D选项正确.故选D.【点睛】本题考查了反比例函数y=kx(k≠0)的图象及性质,①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随3、B【解析】
根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x是非负实数时,x≥0②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【解析】
根据正方形的性质易证S△DEF∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.【详解】解:∵四边形ABCD为正方形,∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,∴,∵DC=3DF,∴DF:AB=1:3∴S△DEF:S△AEB=1:9.故选:D.【点睛】本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.5、B【解析】
由菱形的性质可求AC,BD的长,由菱形的面积公式可求解.【详解】∵四边形ABCD是菱形∴AO=CO=3,BO=DO=33,AC⊥BD∴AC=6,BD=63∴菱形ABCD的面积=12故选B.【点睛】本题考查了菱形的性质,熟练运用菱形面积公式是本题的关键.6、B【解析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B7、C【解析】
分式无意义则分式的分母为0,据此求得x的值即可.【详解】A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选C.【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8、A【解析】分析:直接利用二次根式定义分析得出答案.详解:A、a2+1,∵a2B、333C、-1,无意义,不合题意;D、12a故选A.点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.9、A【解析】
据正比例函数的增减性可得出(m-1)的范围,继而可得出m的取值范围.【详解】解:根据题意,知:y随x的增大而减小,则m﹣1<0,即m<1.故选:A.【点睛】能够根据两点坐标之间的大小关系,判断变化规律,再进一步根据正比例函数图象的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.列不等式求解集.10、D【解析】
①利用同角的余角相等,易得∠EDC=∠PDA,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠CED,结合三角形的外角的性质,易得∠CEP=90°,即可证;③过C作CF⊥DE,交DE的延长线于F,利用②中的∠BEP=90°,利用勾股定理可求CE,结合△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,再利用勾股定理可求EF、CF;⑤在Rt△CDF中,利用勾股定理可求CD2,即是正方形的面积;④连接AC,求出△ACD的面积,然后减去△ACP的面积即可.【详解】解:①∵DP⊥DE,∴∠PDE=90°,∴∠PDC+∠EDC=90°,∵在正方形ABCD中,∠ADC=90°,AD=CD,∴∠PDC+∠PDA=90°,∴∠EDC=∠PDA,在△APD和△CED中∴(SAS)(故①正确);②∵,∴∠APD=∠CED,又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,∴∠CEA=∠PDE=90°,(故②正确);③过C作CF⊥DE,交DE的延长线于F,∵DE=DP,∠EDP=90°,∴∠DEP=∠DPE=45°,又∵②中∠CEA=90°,CF⊥DF,∴∠FEC=∠FCE=45°,∵,∠EDP=90°,∴∴,∴CF=EF=,∴点C到直线DE的距离为(故③不正确);⑤∵CF=EF=,DE=1,∴在Rt△CDF中,CD2=(DE+EF)2+CF2=,∴S正方形ABCD=CD2=(故⑤正确);④如图,连接AC,∵△APD≌△CED,∴AP=CE=,∴=S△ACD﹣S△ACP=S正方形ABCD﹣×AP×CE=×()﹣××=.(故④不正确).故选:D.【点睛】本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识,综合性比较强,得出,进而结合全等三角形的性质分析是解题关键.11、A【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10)的记数法.【详解】解:261800=2.618×105.故选A【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的定义.12、C【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.【详解】A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.故选C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(每题4分,共24分)13、x+5y=1x﹣y=1【解析】
通过十字相乘法,把方程左边因式分解,即可求解.【详解】∵x2+4xy﹣5y2=1,∴(x+5y)(x﹣y)=1,∴x+5y=1或x﹣y=1,故答案为:x+5y=1和x﹣y=1.【点睛】该题重点考查了因式分解中的十字相乘法,能顺利的把方程左边因式分解是解题的关键所在.十字相乘法相关的知识点是:必须是二次三项式,并且符合拆解的原则,即可利用十字相乘分解因式.14、0.1.【解析】
求出平均数,再利用方差计算公式求出即可:根据表格得,平均数=(5×3+1×4+7×3)÷10=1.∴方差=.【详解】请在此输入详解!15、1【解析】
已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.【详解】解:,E为AC的中点,,分别为AB,BC的中点,.故答案为:1.【点睛】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.16、1.【解析】
从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答【详解】∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=1°,故答案为:1.【点睛】此题考查正多边形的性质和外角,解题关键在于求出是几边形17、(,0)【解析】
如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,【详解】解:设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0).18、1【解析】试题分析:把x=1代入方程得:1-2m+m=0,解得m=1.考点:一元二次方程的根.三、解答题(共78分)19、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.【解析】
(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【详解】试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.20、见解析【解析】
根据尺规作线段垂直平分线的作法,作出AB的垂直平分线与AC的交点,即可.【详解】如图所示:∴点D即为所求.【点睛】本题主要考查线段的垂直平分线的尺规作图,熟练掌握线段的中垂线尺规作图的基本步骤,是解题的关键.21、(1)平行四边形;(2)见解析【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.故答案为平行四边形;(2)证明:如图2中,连接,.∵,∴即,在和中,,∴,∴∵点,,分别为边,,的中点,∴,,由(1)可知,四边形是平行四边形,∴四边形是菱形.如图设与交于点.与交于点,与交于点.∵,∴,∵,∴∵,,∴,∵四边形是菱形,∴四边形是正方形.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.22、(1)①全等;②DE=BF+EF;(2)DE=BF-EF,见解析【解析】
(1)①根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BGA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;②根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.(2)与(1)同理证△ABF≌△DAE得AE=BF,DE=AF,由AF=AE-EF=BF-EF可得答案.【详解】(1)①∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BGA=∠DAE,∵∠ABC=∠AED,∴∠BAF=180-∠ABC-∠BGA=180-∠AED-∠DAE=∠ADE,∵∠ABF=∠BGF,∠BGA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);②∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.故答案为:全等,DE=BF+EF;(2)DE=BF-EF,如图,∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BGA=∠DAE,∵∠ABC=∠AED,∴∠BAF=180-∠ABC-∠BGA=180-∠AED-∠DAE=∠ADE,∵∠ABF=∠BGF,∠BGA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);∴AE=BF,DE=AF,∵AF=AE-EF=BF-EF,则DE=BF-EF【点睛】本题是四边形的综合问题,考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.23、(1)证明见解析;(2)证明见解析.【解析】
(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.24、见解析.【解析】
通过证明△EOB≌△FOD得出EO=FO,结合G、H分别为OB、OD的中点,可利用对角线互相平分的四边形是平行四边形进行证明.【详解】证明:∵四边形ABCD为平行四边形,∴BO=DO,AD=BC且AD∥BC.∴∠ADO=∠CBO.又∵∠EOB=∠FOD,∴△EOB≌△FOD(ASA).∴EO=FO.又∵G、H分别为OB、OD的中点,∴GO=HO.∴四边形GEHF为平行四边形.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗废物规范处置培训
- 医疗人员行为规范
- 搜救官兵心理疏导课件
- 教育五项规定
- 护理实习科室总结报告
- 幼儿园恐龙教育
- 车工(铣床)操作培训
- 建筑施工细部节点工艺下册屋面外墙装饰及景观工程
- 护理工作成绩报告
- 心病脑病科护理查房
- 胎儿颈项透明层(NT)的超声诊断课件
- 工程移交单(标准样本)
- 中绿的制度课
- 《最好的未来》合唱曲谱
- 常用材料折弯系数表大全
- 小班语言《坐火车》课件
- FIDIC合同《设计采购施工(EPC)交钥匙工程合同条件》(中英文对照版)
- 环境监测课件:第3章 空气和废气监测2
- 航空航天概论(课堂PPT)
- 律师刑事诉讼格式文书一至十九
- ASTM E689-79球墨铸铁射线检测的参考底片(中译扫描本) - 图文-
评论
0/150
提交评论