![福州第一中学2024届八年级数学第二学期期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view2/M01/16/31/wKhkFmYWtiWAPULLAAHf5EDT8hg662.jpg)
![福州第一中学2024届八年级数学第二学期期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view2/M01/16/31/wKhkFmYWtiWAPULLAAHf5EDT8hg6622.jpg)
![福州第一中学2024届八年级数学第二学期期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view2/M01/16/31/wKhkFmYWtiWAPULLAAHf5EDT8hg6623.jpg)
![福州第一中学2024届八年级数学第二学期期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view2/M01/16/31/wKhkFmYWtiWAPULLAAHf5EDT8hg6624.jpg)
![福州第一中学2024届八年级数学第二学期期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view2/M01/16/31/wKhkFmYWtiWAPULLAAHf5EDT8hg6625.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福州第一中学2024届八年级数学第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.图中两直线L1,L2的交点坐标可以看作方程组()的解.A. B. C. D.2.的绝对值是()A. B. C. D.3.一元二次方程根的情况为()A.有两个相等的实数根 B.有两个正实数根C.有两个不相等的实数根 D.有两个负实数根4.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.9 B.12 C.9 D.185.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4 B.6 C.8 D.106.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣37.不等式的解是()A. B. C. D.8.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣19.一次函数的图像上有点,B(2,),则下面关系正确的是()A.>> B.>> C.>> D.>>10.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为()A.6 B.5 C.4 D.3二、填空题(每小题3分,共24分)11.如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE=
________12.各内角所对边的长分别为、、,那么角的度数是________。13.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.14.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).15.如果是一元二次方程的两个实数根,那么的值是____.16.一组数2、a、4、6、8的平均数是5,这组数的中位数是______.17.若,化简的正确结果是________________.18.如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.求证:求证:四边形ABDF为平行四边形
若,,,求四边形ABDF的面积20.(6分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.21.(6分)往一个长25m,宽11m的长方体游泳池注水,水位每小时上升0.32m,(1)写出游泳池水深d(m)与注水时间x(h)的函数表达式;(2)如果x(h)共注水y(m3),求y与x的函数表达式;(3)如果水深1.6m时即可开放使用,那么需往游泳池注水几小时?注水多少(单位:m3)?22.(8分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.23.(8分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.24.(8分)在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”.如图为点、的“极好菱形”的一个示意图.已知点的坐标为,点的坐标为.(1)点,,中,能够成为点、的“极好菱形”的顶点的是.(2)若点、的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标.(3)如果四边形是点、的“极好菱形”.①当点的坐标为时,求四边形的面积.②当四边形的面积为8,且与直线有公共点时,直接写出的取值范围.25.(10分)计算:(1);(2)先化简,再求值,;其中,x2,y2.26.(10分)如图,正比例函数的图象与反比例函数的图象有一个交点为.(1)求反比例函数函数表达式;(2)根据图象,直接写出当时,的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【解析】分析:根据图中信息分别求出直线l1和l2的解析式即可作出判断.详解:设直线l1和l2的解析式分别为,根据图中信息可得:,,解得:,,∴l1和l2的解析式分别为,即,,∴直线l1和l2的交点坐标可以看作方程的交点坐标.故选B.点睛:根据图象中的信息由待定系数法求得直线l1和l2的解析式是解答本题的关键.2、D【解析】
直接利用绝对值的定义分析得出答案.【详解】解:-1的绝对值是:1.
故选:D.【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.3、C【解析】
根据方程的系数结合根的判别式,可得出△=8>0,由此即可得出原方程有两个不相等的实数根.【详解】解:∵在方程x2+2x-1=0中,△=22-4×1×(-1)=8>0,
∴方程x2+2x-1=0有两个不相等的实数根.
故选:C.【点睛】本题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4、D【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论【详解】ABCD为平行四边形,所以,AD∥BC,所以,∠AEG=∠EGF,由折叠可知:∠GEF=∠DEF=60°,所以,∠AEG=60°,所以,∠EGF=60°,所以,三有形EGF为等边三角形,因为EF=6,所以,△GEF的周长为18【点睛】此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°5、C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.故选C.6、B【解析】
解:由题意得,1-x>0,解得x<1.故选:B.【点睛】本题考查函数自变量取值范围.7、C【解析】
解出两个不等式的解集,再取它们的公共部分作为不等式组的解集即可【详解】解:解不等式①得:解不等式②得:∴该不等式的解集是故答案为:C【点睛】本题考查了一元一次不等式组的解法,掌握其解法是解题的关键.8、B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.9、C【解析】
根据一次函数时,y随x的增大而减小,可得,的大小关系,再根据不等式的性质判断,与b的大小关系.【详解】∵一次函数中,∴y随x的增大而减小∵∴∵∴∴,即,∴故选C.【点睛】本题考查一次函数的增减性,熟练掌握时,一次函数y随x的增大而减小是解题的关键.10、C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD==4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.二、填空题(每小题3分,共24分)11、40°【解析】
根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.【详解】∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,∴△ABC≌△DEF.∵∠A=50°,∴∠EDF=∠A=50°,∵△DEF是直角三角形,∴∠EDF+∠DFE=90°.∵∠EDF=50°,∴∠DFE=90°-50°=40°.故答案为40°.【点睛】本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.12、【解析】
根据勾股定理的逆定理判断即可.【详解】∵△ABC各内角A、B、C所对边的长分别为13、12、5,∴52+122=132,∴∠A=90°,故答案为:90°【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.13、35°【解析】
根据折叠的性质可得∠ECB=∠ECF,CB=CF,根据菱形的性质可得CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF的顶角∠DCF,即可求出∠ECF的度数【详解】解:在菱形ABCD中,CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,根据折叠可得:∠ECB=∠ECF,CB=CF,∴CF=CD∴∠DCF=180°-70°-70°=40°,∴∠ECF=(∠BCD-∠DCF)=35°.故答案为35°.【点睛】本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14、乙【解析】
直接根据方差的意义求解.方差通常用s2来表示,计算公式是:s2=[(x1-x¯)2+(x2-x¯)2+…+(xn-x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.15、-3【解析】
直接根据一元二次方程根与系数的关系得到+的值.【详解】根据题意,=-3.
故答案为:-3.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握方程的两根为,的关系:+=,=.16、5【解析】
由平均数可求解a的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.17、1.【解析】
根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【详解】解:∵2<x<3,
∴|x-2|=x-2,|3-x|=3-x,
原式=|x-2|+3-x
=x-2+3-x
=1.
故答案为:1.【点睛】本题考查二次根式的性质及绝对值的性质,能正确根据二次根式的性质进行化简是解题的关键.18、18【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长【详解】∵CE平分∠BCD交AD边于点E,∴.∠ECD=∠ECB∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC∴∠DEC=∠ECB,∴∠DEC=∠DCE∴DE=DC∵AD=2AB∴AD=2CD∴AE=DE=AB=3∴AD=6∴四边形ABCD的周长为:2×(3+6)=18.故答案为:18.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行三、解答题(共66分)19、(1)详见解析;(2)详见解析;(3).【解析】
(1)先根据两直线平行内错角相等得出,再根据E为BD中点,和对顶角相等,根据AAS证出≌,从而证出;(2)根据对角线互相平分的四边形是平行四边形,得出四边形ABCD是平行四边形,证出,,在结合已知条件,根据一组对边平行且相等的四边形是平行四边形,从而证出结论;(3)根据平行四边形的对角相等得出,再根据得出,根据勾股定理得出,从而得出四边形ABDF的面积;【详解】证明,,,,≌,;由可知,,四边形ABCD是平行四边形,,,,,,四边形ABDF为平行四边形;四边形ABDF为平行四边形,,AF=BD=2,,,,,
,
根据勾股定理可得:
,四边形ABDF的面积.【点睛】本题考查了平行四边形的性质和判定,全等三角形的性质和判定以及勾股定理等知识点,熟练掌握相关的知识是解题的关键.20、(1)见解析;(2)BD=2.【解析】
(1)在平行四边形ABCD中,AC与BD互相平分,OA=OC,OB=OD,又E,F为OB,OD的中点,所以OE=OF,所以AC与EF互相平分,所以四边形AECF为平行四边形;
(2)首先根据平行四边形的性质可得AO=CO,BO=DO,再利用勾股定理计算出BO的长,进而可得BD的长.【详解】(1)证明:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F为OB,OD的中点,∴OE=OF,∴AC与EF互相平分,∴四边形AECF为平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC=2,∴AO=2,∵AB=1,AC⊥AB,∴,∴BD=.【点睛】此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形对角线互相平分.21、(1)d=0.32x;(2)y=0.88x;(3)需往游泳池注水5小时;注水440m3【解析】试题分析:(1)根据题意知:利用水位每小时上升0.32m,得出水深d(m)与注水时间x(h)之间的函数关系式;(2)首先求出游泳池每小时进水的体积,再求y与x的函数表达式即可;
(3)利用(1)中所求,结合水深不低于1.6m得出不等式求出即可.【解答】解:(1)d=0.32x;
(2)15×11×0.32∴y=88x(3)设向游泳池注水x小时,由题意得:
0.32x≥1.6,
解得:x≥5,∴y=88x=88×x=440m3.答:向游泳池至少注水4小时后才可以使用.注水440m3【点评】此题主要考查了一次函数的应用以及不等式的应用,根据题意得出游泳池水深d(m与注水时间x(h)之间的函数关系式是解题关键.22、(1)见解析;(2)AE=;(3)(3),理由见解析.【解析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE=GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;(3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到,可知∥,再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN是正方形,∴AM=AN∠AMC=∠N=90°∴△AMC,△AND是Rt△∵△ABC是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt△AMC≌Rt△AND(HL)(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=则AE=GE=易得△GBE是等腰直角三角形∴BG=EG=∴AB=BC=易得∠DHF=30°∴HD=2DF=,HF=∴BF=BH+HF=∵Rt△AMC≌Rt△AND(HL)∴易得CF=DF=∴BC=BF-CF=∴∴∴AE=(3);理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌,∴,∴∥,∴∵∴∴,∵∴≌(SAS)∴∴∴是等腰直角三角形∴∴∴【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.23、(1)见解析;(1)①见解析,②1【解析】
(1)直接利用直角三角形斜边的中线等于斜边的一半,即可得出结论;(1)①延长CM交OB于T,先判断出△CDM≌△TBM得出CM=TM,DC=BT=OC,进而判断出△OAC≌△BAT,得出AC=AT,即可得出结论;②先利用等腰直角三角形的性质求出再求出OD,DC=CO=,再用勾股定理得出CT,进而判断出CM=AM,得出AM=OM,进而求出ON,再根据勾股定理求出MN,即可得出结论.【详解】解:(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,∴AM=BD,∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM=BD,∴AM=CM;(1)①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB==AB=4,在图①中,点D是OA的中点,∴OD=OA=1,∵△OCD是等腰直角三角形,∴DC=CO=ODsin45°==,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3,在Rt△OTC中,CT==1,∵CM=TM=CT==AM,∵OM是Rt△COT的斜边上的中线,∴OM=CT=,∴AM=OM,过点M作MN⊥OA于N,则ON=AN=OA=1,根据勾股定理得,MN==1,∴S△AOM=OA•MN=×4×1=1.【点睛】此题是几何变换综合题,主要考查了旋转的性质,直角三角形的性质,全等三角形的判定和性质,勾股定理及三角函数的应用,构造出全等三角形是解本题的关键.24、(1),;(2)这个正方形另外两个顶点的坐标为、;(3)①;②的取值范围是【解析】
(1)根据“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高压泵项目规划申请报告模板
- 2025年策划协议离婚程序与标准
- 2025年土地买卖策划中介服务协议
- 2025年数字化制造业转型升级协议
- 2025年合作伙伴共同规划有限公司合同协议范本
- 2025年产品供应条款协议示例
- 2025年全球技术转移与创新合作协议
- 2025年二次结构墙体劳务承包合同
- 2025年信息技术外包服务协议示范本
- 2025年仪式用服装租借合同示例
- 建筑工程节后复工自查表
- 华莱士标准化体系
- 初中语文九年级下册阅读理解50篇附答案解析
- 快捷smt全自动物料仓储方案
- 火电厂各指标指标解析(最新版)
- keysight眼图和抖动噪声基础知识与测量方法
- TPU材料项目可行性研究报告写作参考范文
- 试用期考核合格证明表
- 锅炉补给水阴阳混床操作步序表
- 2005年第4季度北京住房租赁指导价格
- 医疗器械GMP计算机软件确认控制程序
评论
0/150
提交评论