2024年陕西省西安市交通大附属中学八年级数学第二学期期末监测试题含解析_第1页
2024年陕西省西安市交通大附属中学八年级数学第二学期期末监测试题含解析_第2页
2024年陕西省西安市交通大附属中学八年级数学第二学期期末监测试题含解析_第3页
2024年陕西省西安市交通大附属中学八年级数学第二学期期末监测试题含解析_第4页
2024年陕西省西安市交通大附属中学八年级数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年陕西省西安市交通大附属中学八年级数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知a>b,c≠0,则下列关系一定成立的是().A.ac>bc B. C.c-a>c-b D.c+a>c+b2.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.正方形的一条对角线之长为3,则此正方形的边长是()A. B.3 C. D.4.如图,的对角线与相交于点,,垂足为,,,,则的长为()A. B. C. D.5.如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是()A.2 B.1 C. D.6.如图,直线y=2x+4与x轴,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰ΔOBC,将ΔOBC沿y轴折叠,使点C恰好落在直线AB上,则点C的坐标为()A.(1,2) B.(4,2) C.(3,2) D.(-1,2)7.下列关于矩形对角线的说法中,正确的是A.对角线相互垂直 B.面积等于对角线乘积的一半C.对角线平分一组对角 D.对角线相等8.某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:成绩(分)35394244454850人数(人)2566876根据如表的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是44分D.该班学生这次考试最高成绩是50分9.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A. B. C. D.10.小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是()A.平行四边形B.矩形C.正方形D.梯形11.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分 B.82分 C.84分 D.86分12.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是().A. B.C. D.二、填空题(每题4分,共24分)13.如图,平行四边形ABCD的顶点A是等边△EFG边FG的中点,∠B=60°,EF=4,则阴影部分的面积为________.14.若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).15.因式分解:____.16.已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.17.如图,△ABC中,AB=BC=12cm,D、E、F分别是BC、AC、AB边上的中点,则四边形BDEF的周长是__________cm.18.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为________________三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.20.(8分)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+1b)(a+b)=a1+3ab+1b1.请回答下列问题:(1)写出图1中所表示的数学等式:_____________.(1)利用(1)中所得的结论,解决下列问题:已知a+b+c=11,ab+bc+ac=38,求a1+b1+c1的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个长为b、宽为a的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为1a1+5ab+1b1;②再利用另一种计算面积的方法,可将多项式1a1+5ab+1b1分解因式,即1a1+5ab+1b1=________.21.(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.22.(10分)直线分别与轴交于两点,过点的直线交轴负半轴于,且.求点坐标.求直线的解析式.直线的解析式为,直线交于点,交于点,求证:.23.(10分)函数y=mx+n与y=nx的大致图象是()A. B.C. D.24.(10分)(1)下列关于反比例函数y=的性质,描述正确的有_____。(填所有描述正确的选项)A.y随x的增大而减小B.图像关于原点中心对称C.图像关于直线y=x成轴对称D.把双曲线y=绕原点逆时针旋转90°可以得到双曲线y=-(2)如图,直线AB、CD经过原点且与双曲线y=分别交于点A、B、C、D,点A、C的横坐标分别为m,n(m>n>0),连接AC、CB、BD、DA。①判断四边形ACBD的形状,并说明理由;②当m、n满足怎样的数量关系时,四边形ACBD是矩形?请直接写出结论;③若点A的横坐标m=3,四边形ACBD的面积为S,求S与n之间的函数表达式。25.(12分)请用无刻度尺的直尺分别按下列要求作图(保留作图痕迹).(1)图1中,点是的所在边上的中点,作出的边上中线.(2)如图,中,,且,是它的对角线,在图2中找出的中点;(3)图3是在图2的基础上已找出的中点,请作出的边上的中线.26.计算:.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据不等式的基本性质一一判断可得答案.【详解】解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即.故本选项错误;C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.故选D.【点睛】本题主要考查的是不等式的基本性质.不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.即如果a>b,那么ac>bc;不等式的性质2:不等式两边乘(或除)以同一个正数,不等号的方向不变.即如果a>b,c>0,那么ac>bc或(>);不等式的性质3:不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc或(<).2、D【解析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.3、A【解析】

根据正方形的性质和勾股定理列方程求解即可.【详解】解:设正方形的边长为a,∵正方形的一条对角线之长为3,∴a2+a2=32,∴a=(负值已舍去),故选:A.【点睛】本题考查了正方形的性质和勾股定理,熟练掌握正方形的性质是解决问题的关键.4、D【解析】

∵四边形ABCD是平行四边形,,.又,在中,,故选D.【点睛】错因分析:中等题。选错的原因是:1.对平行四边形的性质没有掌握;2.不能利用勾股定理的逆定理得出;3.未能利用的两种计算方法得到线段间的关系.5、B【解析】

证明四边形ABDE是平行四边形,得出AB=DE,证出CE=2AB,求出∠CEF=30°,得出CE=2CF=2,即可得出AB的长.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BCD=∠BAD=120°,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∴CE=2AB,∵∠BCD=120°,∴∠ECF=60°,∵EF⊥BC,∴∠CEF=30°,∴CE=2CF=2,∴AB=1;故选:B.【点睛】本题考查平行四边形的性质与判定、直角三角形的性质;熟练掌握平行四边形的判定与性质是解决问题的关键.6、A【解析】

由直线y=2x+4与y轴交于点B,可得OB=4,再根据△OBC是以OB为底的等腰三角形,可得点C的纵坐标为2,依据△OBC沿y轴折叠,使点C恰好落在直线AB上,即可得到点C的横坐标为1.【详解】解:∵直线y=2x+4与y轴交于点B,∴B(0,4),∴OB=4,又∵△OBC是以OB为底的等腰三角形,∴点C的纵坐标为2,∵△OBC沿y轴折叠,使点C恰好落在直线AB上,∴当y=2时,2=2x+4,解得x=-1,∴点C的横坐标为1,∴点C的坐标为(1,2),故选:A.【点睛】本题考查了等腰三角形的性质、翻折变换的性质、一次函数的性质;熟练掌握翻折变换和等腰三角形的性质是解决问题的关键.7、D【解析】

根据矩形的性质:矩形的对角线相等且互相平分得到正确选项.【详解】解:矩形的对角线相等,故选:.【点睛】此题考查了矩形的性质,熟练掌握矩形的性质是解本题的关键.8、C【解析】

根据总数,众数,中位数的定义即可一一判断;【详解】该班一共有:2+5+6+6+8+7+6=40(人),众数是45分,最高成绩为50分,中位数为45分,

故A、B、D正确,C错误,

故选:C.【点睛】此题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.9、C【解析】

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:观察四个选项中的图形,只有C符合中心对称的定义.【点睛】本题考察了中心对称的含义.10、A【解析】试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.考点:1.平行四边形的判定;2.三角形中位线定理.11、D【解析】

利用加权平均数的计算方法直接计算即可得出答案.【详解】解:根据题意得:=86(分),答:小明的学期数学成绩是86分;故选:D.【点睛】本题考查加权平均数,解题的关键是掌握加权平均数的计算方法.12、D【解析】

由图易知两条直线分别经过(1,1)、(0,-1)两点和(0,2)、(1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(1,1)、(0,-1)的直线解析式为y=ax+b(a≠0).将(1,1)、(0,-1)两点坐标代入解析式中,解得故过(1,1)、(0,-1)的直线解析式y=2x-1,对应的二元一次方程为2x-y-1=0.设经过(0,2)、(1,1)的直线解析式为y=kx+h(k≠0).将(0,2)、(1,1)两点代入解析式中,解得故过(0,2)、(1,1)的直线解析式为y=-x+2,对应的二元一次方程为x+y-2=0.因此两个函数所对应的二元一次方程组是故选D【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.二、填空题(每题4分,共24分)13、3【解析】

作AM⊥EF,AN⊥EG,连接AE,只要证明△AMH≌△ANL,即可得到S阴=S四边形AMEN,再根据三角形的面积公式即可求解.【详解】如图,作AM⊥EF,AN⊥EG,连接AE,∵△ABC为等边三角形,AF=AG,∴∠AEF=∠AEN,∵AM⊥EF,AN⊥EG,∴AM=AN,∵∠MEN=60°,∠EMA=∠ENA=90°,∴∠MAN=120°,∵四边形ABCD为平行四边形,∴BC∥AD,∴∠DAB=180°-∠B=120°,∴∠MAN=∠DAB

∴∠MAH=∠NAL,又AM⊥EF,AN⊥EG,AM=AN,∴△AMH≌△ANL∴S阴=S四边形AMEN,∵EF=4,AF=2,∠AEF=30°∴AE=2,AM=,EM=3∴S四边形AMEN=2××3×=3,∴S阴=S四边形AMEN=3故填:3.【点睛】此题主要考查平行四边形与等边三角形的性质,解题的关键是熟知全等三角形的判定与含30°的直角三角形的性质.14、【解析】

可以分别将x=1和x=2代入函数算出的值,再进行比较;或者根据函数的增减性,判断函数y随x的变化规律也可以得出答案.【详解】解:∵一次函数∴y随x增大而减小∵1<2∴故答案为:【点睛】本题考查一次函数的增减性,熟练掌握一次函数增减性的判断是解题关键.15、【解析】

先提取4,然后利用平方差公式计算.【详解】原式=4(m2-9)=4(m+3)(m-3),

故答案是:4(m+3)(m-3)【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.16、14【解析】

根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.【详解】解:∵的面积为∴=解得=2根据勾股定理得:==7则代数式==2×7=14故答案为:14【点睛】本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.17、24【解析】

根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.【详解】∵D、E、F分别是BC、AC、AB边上的中点,∴,,,∵AB=BC=12cm∴BF=DE=BD=BF=6cm∴四边形BDEF的周长为24cm.【点睛】本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.18、x<-1;【解析】

由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.【详解】解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.

故本题答案为:x<-1.【点睛】本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.三、解答题(共78分)19、(1)O(0,0);90;(1)图形详见解析;(3)证明详见解析.【解析】试题分析:(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;(1)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;(3)利用面积,根据正方形CC1C1C3的面积等于正方形AA1A1B的面积加上△ABC的面积的4倍,列式计算即可得证.试题解析:解:(1)旋转中心坐标是O(0,0),旋转角是90度;(1)画出的图形如图所示;(3)有旋转的过程可知,四边形CC1C1C3和四边形AA1A1B是正方形.∵S正方形CC1C1C3=S正方形AA1A1B+4S△ABC,∴(a+b)1=c1+4×ab,即a1+1ab+b1=c1+1ab,∴a1+b1=c1.考点:作图-旋转变换;勾股定理的证明.20、(1)(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;(1)a1+b1+c1=45;(3)①画图见解析;②1a1+5ab+1b1=(1a+b)(a+1b).【解析】试题分析:(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(1)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)①找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件;②根据所给的规律分解因式即可.试题解析:(1)(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;故答案为(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;(1)a1+b1+c1=(a+b+c)1﹣1ab﹣1ac﹣1bc,=111﹣1×38=45;(3)①如图所示,②如上图所示的矩形面积=(1a+b)(a+1b),它是由1个边长为a的正方形、5个边长分别为a、b的长方形、1个边长为b的小正方形组成,所以面积为1a1+5ab+1b1,则1a1+5ab+1b1=(1a+b)(a+1b),故答案为1a1+5ab+1b1=(1a+b)(a+1b).点睛:本题考查了完全平方公式的几何背景和因式分解的应用,关键是能够把代数式转化成几何图形,用到的知识点是长方形和正方形的面积公式,要认真总结规律,进行答题.21、57+12﹣【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)=(12+12+45)﹣(6﹣2+2﹣5)=(57+12﹣)(cm2).考点:二次根式的应用22、(1)(0,6);(2)y=3x+6;(3)证明见详解【解析】

(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;

(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;

(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.【详解】(1把A(6,0)代入y=-x+b得-6+b=0,解得b=6,

所以直线AB的解析式为y=-x+6,

当x=0时,y=-x+6=6,

所以点B的坐标为(0,6);

(2)∵OB:OC=3:1,而OB=6,

∴OC=2,

∴C点坐标为(-2,0),

设直线BCy=mx+n,

把B(0,6),C(-2,0)分别代入得,解得∴直线BC的解析式为y=3x+6;(3)证明:解方程组解得则E(3,3),解方程组得则F(-3,-3),所以S△EBO=×6×3=9,

S△FBO=×6×3=9,

所以S△EBO=S△FBO.【点睛】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论