岳阳市2024年数学八年级下册期末学业水平测试模拟试题含解析_第1页
岳阳市2024年数学八年级下册期末学业水平测试模拟试题含解析_第2页
岳阳市2024年数学八年级下册期末学业水平测试模拟试题含解析_第3页
岳阳市2024年数学八年级下册期末学业水平测试模拟试题含解析_第4页
岳阳市2024年数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

岳阳市2024年数学八年级下册期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是A.40 B.20 C.10 D.252.如图,的坐标为,,若将线段平移至,则的值为()A.5 B.4 C.3 D.23.下列说法错误的是()A.必然事件发生的概率为1 B.不确定事件发生的概率为0.5C.不可能事件发生的概率为0 D.随机事件发生的概率介于0和1之间4.在平面直角坐标系中,点关于x轴对称点所在的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如果1≤a≤,则+|a﹣1|的值是()A.1 B.﹣1 C.2a﹣3 D.3﹣2a6.下列事件中是必然事件的是()A.明天太阳从东边升起;B.明天下雨;C.明天的气温比今天高;D.明天买彩票中奖.7.在四边形ABCD中,AC⊥BD,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是()A.矩形 B.菱形 C.正方形 D.无法确定8.若代数式有意义,则一次函数的图象可能是A. B. C. D.9.如图,在矩形ABCD中,AB=1,BC=2A.2-12 B.3-1210.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③二、填空题(每小题3分,共24分)11.若一组数据,,,,的平均数是,则__________.,这组数据的方差是_________.12.菱形的两条对角线相交于,若,,则菱形的周长是___.13.如图,在Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为_____.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.15.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=_____.16.在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.17.已知,化简:__________.18.因式分解:______.三、解答题(共66分)19.(10分)如图,已知过点B(1,0)的直线与直线:相交于点P(-1,a).且l1与y轴相交于C点,l2与x轴相交于A点.(1)求直线的解析式;(2)求四边形的面积;(3)若点Q是x轴上一动点,连接PQ、CQ,当△QPC周长最小时,求点Q坐标.20.(6分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.(1)若该城市某户6月份用水18吨,该户6月份水费是多少?(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.21.(6分)如图,在梯形中中,,是的中点,,,,,点是边上一动点,设的长为.(1)当的值为多少时,以点为顶点的三角形为直角三角形;(2)当的值为多少时,以点为顶点的四边形为平行四边形;(3)点在边上运动的过程中,以为顶点的四边形能否构成菱形?试说明理由.22.(8分)分解因式:(1);(2)。23.(8分)如图1,在正方形ABCD中,对角线AC,BD交于点O,点E在AB上,点F在BC的延长线上,且AECF.连接EF交AC于点P,分别连接DE,DF.(1)求证:ADECDF;(2)求证:PEPF;(3)如图2,若PEBE,则的值是.(直接写出结果即可).24.(8分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.25.(10分)为了丰富学生的课外活动,拓展孩子们的课外视野,我校的社团活动每年都在增加,社员也一直在增加.2017年我校八年级社员的总人数是300人,2019年我校八年级总校社员有432人。试求出这两年八年级社员人数的平均增长率.26.(10分)(1)化简:.(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据菱形的面积=对角线之积的一半,可知菱形的面积为5×8÷2=20.故选B.2、D【解析】

平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.【详解】解:由B点平移前后的纵坐标分别为1、1,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为1、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=1.故选D.【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.3、B【解析】

A选项:∵必然事件发生的概率为1,故本选项正确;

B选项:∵不确定事件发生的概率介于1和0之间,故本选项错误;

C选项:∵不可能事件发生的概率为0,故本选项正确;

D选项:∵随机事件发生的概率介于0和1之间,故本选项正确;

故选B.4、A【解析】【分析】先推出点在第四象限,再根据轴对称推出对称点所在象限.【详解】因为点在第四象限,所以点关于x轴对称点所在的象限是第一象限.故选:A【点睛】本题考核知识点:平面直角坐标系中点的对称问题.解题关键点:理解点的对称规律.5、A【解析】

直接利用a的取值范围进而化简二次根式以及绝对值得出答案.【详解】解:=2﹣a+a﹣1=1.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.6、A【解析】【分析】根据必然事件和随机事件的定义进行分析.【详解】A.明天太阳从东边升起,是必然事件,故可以选;B.明天下雨,是随机事件,故不能选;C.明天的气温比今天高,是随机事件,故不能选;D.明天买彩票中奖,是随机事件,故不能选.故选:A【点睛】本题考核知识点:必然事件和随机事件.解题关键点:理解必然事件和随机事件的定义.7、A【解析】

首先利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形判定即可.【详解】证明:如图,∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=AC,GH=AC,EF//AC∴EF=GH,同理EH=FG,GF//BD∴四边形EFGH是平行四边形;又∵对角线AC、BD互相垂直,∴EF与FG垂直.∴四边形EFGH是矩形.故选A.【点睛】本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,平行四边形的判断及矩形的判断进行证明,是一道综合题.8、A【解析】

根据二次根式有意义的条件和分式有意义的条件得到k-1>0,解k>1,则1-k<0,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断.【详解】解:根据题意得k-1>0,解k>1,

因为k-1>0,1+k>0,

所以一次函数图象在一、二、三象限.

故选:A.【点睛】本题考查一次函数与系数的关系:对于y=kx+b,当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.9、C【解析】

根据对称性可知:BE=FE,∠AFE=∠ABF=90°,又因为∠C=∠C,所以ΔCEF∽ΔCAB,根据相似性可得出:EFAB=CE【详解】解:设BE的长为x,则BE=FE=x、CE=2-x,在Rt△ABC中,AC=AB2+BC∵∠FCE=∠BCA,∠AFE=∠ABE=90°,∴△CEF∽△CAB(两对对应角相等的两三角形相似),∴EF∴BE=EF=CEAC×AB=2-x5∴BE=x=5-1故选:C.【点睛】本题主要考查图形的展开与折叠和矩形的性质,同时学生们还要把握勾股定理和相似三角形的性质知识点.10、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每小题3分,共24分)11、【解析】

根据平均数的计算方法可求出a,然后根据方差公式求方差即可.【详解】∵,,,,的平均数是,∴1+3+a+2+5=3×5,∴a=4,S2=[(1-3)2+(3-3)2+(4-3)2+(2-3)2+(5-3)2]÷5=2.故答案为:4,2.【点睛】本题考查了算术平均数和方差的计算,熟练掌握计算公式是解答本题的关键.算术平均数的计算公式是:,方差的计算公式为:.12、【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1,故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.13、115【解析】

小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:AC1,正方形BCFG的面积为:BC1;在Rt△ABC中,AB1=AC1+BC1,AB=15,则AC1+BC1=115,即正方形ADEC和正方形BCFG的面积和为115.故答案为115.【点睛】本题考查了勾股定理.关键是根据由勾股定理得AB1=AC1+BC1.注意勾股定理应用的前提条件是在直角三角形中.14、1.1【解析】

连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF=∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【详解】连接DF,如图所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.1;∴CF=1.1;故答案为1.1.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.15、1.【解析】试题分析:利用平均数的定义,列出方程即可求解.解:由题意知,3,a,4,6,7的平均数是1,则=1,∴a=21﹣3﹣4﹣6﹣7=1.故答案为1.点评:本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.16、甲【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:由于S2甲<S乙2,则成绩较稳定的演员是甲.故答案为甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、1【解析】

直接利用二次根式的性质化简得出答案.【详解】解:∵0<a<1,∴,故答案为:1.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.18、a(a+3)(a-3)【解析】

先提取公因式a,再用平方差公式分解即可.【详解】原式=a(a2-9)=a(a+3)(a-3).故答案为a(a+3)(a-3).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.三、解答题(共66分)19、(1)y=-x+1;(2);(3)点Q坐标为(-,0)时△QPC周长最小【解析】

(1)根据点P在直线l2上,求出P的坐标,然后用待定系数法即可得出结论;(2)根据计算即可;(3)作点C关于x轴对称点C',直线C’P与x轴的交点即为所求的点Q,求出点Q的坐标即可.【详解】(1)∵点P(-1,a)在直线l2:y=2x+4上,∴,即,则P的坐标为(-1,2),设直线的解析式为:,那么,解得:,∴的解析式为:.(2)∵直线与y轴相交于点C,∴C的坐标为(0,1).又∵直线与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而,∴.(3)作点C关于x轴对称点C′,易求直线C′P:y=-3x-1.当y=0时,x=,∴点Q坐标为(,0)时,△QPC周长最小.【点睛】本题考查了一次函数的应用.掌握用待定系数法求一次函数的解析式、不规则图形面积的求法是解答本题的关键.20、(1)该户6月份水费是45元;(2)y=3.3x-1.【解析】

(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.【详解】解:(1)根据题意:该户用水18吨,按每吨2.5元收费,2.5×18=45(元),答:该户6月份水费是45元;(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,应缴水费y=2.5×20+3.3×(x-20),整理后得:y=3.3x-1,答:y关于x的函数关系式为y=3.3x-1.【点睛】本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.21、(1)当的值为3或8时,以点为顶点的三角形为直角三角形;(2)当的值为1或11时,以点为顶点的四边形为平行四边形;(3)以点为顶点的四边形能构成菱形,理由详见解析.【解析】

(1)过AD作于,于,当时,分情况讨论,求出即可;(2)分为两种情况,画出图形,根据平行四边形的性质推出即可;(3)化成图形,根据菱形的性质和判定求出BP即可.【详解】解(1)如图,分别过AD作于,于∴而∴∴若以为顶点的三角形为直角三角形,则或,(在图中不存在)当时∴与重合∴当时∴与重合∴故当的值为3或8时,以点为顶点的三角形为直角三角形;(2)若以点为顶点的四边形为平行四边形,那么,有两种情况:①当在的左边,∵是的中点,∴∴②当在的右边,故当的值为1或11时,以点为顶点的四边形为平行四边形;(3)由(2)知,当时,以点为顶点的四边形能构成菱形当时,以点为顶点的四边形是平行四边形,∴,过作于,∵,,则,∴.∴,∴故此时是菱形即以点为顶点的四边形能构成菱形.【点睛】此题考查直角三角形的性质,平行四边形的判定,解题关键在于作辅助线和利用勾股定理进行计算.22、(1);(2).【解析】

(1)原式提取公因式,再利用平方差公式分解即可;

(2)原式提取公因式即可.【详解】解:(1)原式(2)原式【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.23、(1)证明见解析;(2)证明见解析;(3).【解析】

(1)根据证明即可;(2)作交的延长线于,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论