青海省西宁市第二十一中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
青海省西宁市第二十一中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
青海省西宁市第二十一中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
青海省西宁市第二十一中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
青海省西宁市第二十一中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省西宁市第二十一中学2024年八年级下册数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠BAC=112°,则∠DAE的度数为()A.68° B.56° C.44° D.24°2.下列各点中,不在函数的图象上的点是()A.(3,4) B.(﹣2,﹣6) C.(﹣2,6) D.(﹣3,﹣4)3.在平行四边形ABCD中,∠BAD=110°,∠ABD=30°,则∠CBD度数为()A.30° B.40° C.70° D.50°4.下列度数不可能是多边形内角和的是()A. B. C. D.5.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m6.以下列各组数为一个三角形的三边长,能构成直角三角形的是().A.2,3,4 B.4,6,5 C.14,13,12 D.7,25,247.我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.58.下列字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.9.下列命题是真命题的是()A.方程的二次项系数为3,一次项系数为-2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形10.在中,、分别是、边的中点,若,则的长是()A.9 B.5 C.6 D.411.将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180° C.减少360° D.增加360°12.如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为()A.6cm B.8cm C.5cm D.4cm二、填空题(每题4分,共24分)13.有一块田地的形状和尺寸如图,则它的面积为_________.14.若反比例函数y=(2k-1)的图象在二、四象限,则k=________.15.如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.16.如图,点在双曲线上,为轴上的一点,过点作轴于点,连接、,若的面积是3,则__.17.分解因式b2(x﹣3)+b(x﹣3)=_____.18.若正n边形的内角和等于它的外角和,则边数n为_____.三、解答题(共78分)19.(8分)已知一次函数y=﹣x+1.(1)在给定的坐标系中画出该函数的图象;(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.20.(8分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC关于点O的中心对称的△A(2)画出△ABC绕点O顺时针旋转90∘后的△(3)求(2)中线段BC扫过的面积.21.(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点F,DE//AC,AE//BD.(1)求证:四边形DEAF是菱形;(2)若AE=CD,求∠DFC的度数.22.(10分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.23.(10分)化简或解方程(1);(2)24.(10分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.(1)求证:①≌;②;(2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;(3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.25.(12分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.(1)求一次函数的表达式;(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.26.如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.【详解】解:∠B+∠C=180°-∠BAC=68°,

∵AB的垂直平分线交BC于D,

∴DA=DB,

∴∠DAB=∠B,

∵AC的中垂线交BC于E,

∴EA=EC,

∴∠EAC=∠C,

∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,

故选:C.【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、C【解析】

将各选项的点逐一代入进行计算判断即可.【详解】A、当x=3时,y==4,

故(3,4)在函数图象上,正确,不符合题意;B、当x=-2时,y==-6,

故(-2,-6)在函数图象上,正确,不符合题意;C、当x=-2时,y==-6≠6,

故(-2,6)不在函数图象上,错误,符合题意;D、当x=-3时,y==-4,

故(-3,-4)在函数图象上,正确,不符合题意;故答案为:C.【点睛】本题考查反比例函数的图象,属于简单题,要注意计算细心.3、B【解析】

解:在△ABD中,根据三角形内角和定理可求出∠ADB=40°,在根据两线平行内错角相等即可得∠CBD=∠ADB=40°.故选B.【点睛】本题考查三角形内角和定理;平行四边形的性质;平行线的性质.4、B【解析】

根据多边形内角和定理求解即可.【详解】正多边形内角和定理n边形的内角的和等于:(n-2)×180°(n大于等于3且n为整数)A.,正确;B.,错误;C.,正确;D.,正确;故答案为:B.【点睛】本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.5、B【解析】∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.6、D【解析】分析:根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.解答:解:∵72+242=49+576=625=1.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选D.7、A【解析】

根据众数、中位数的定义和加权平均数公式分别进行解答即可.【详解】解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;

把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;

这组数据的平均数是:(47×2+48×3+50)÷6=48,

故选:A.【点睛】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).8、A【解析】

根据中心对称图形及轴对称图形的概念即可解答.【详解】选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D不是轴对称图形,是中心对称图形.故选A.【点睛】本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.9、A【解析】

根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A、正确.

B、错误,对应边不一定成比例.

C、错误,不一定中奖.

D、错误,对角线相等的四边形不一定是矩形.

故选:A.【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.10、C【解析】

根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.【详解】解:∵D、E分别是BC、AC边的中点,∴DE是△CAB的中位线,∴AB=2DE=6.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.11、D【解析】

利用多边形的内角和公式即可求出答案.【详解】解:n边形的内角和是(n-2)•180°,n+2边形的内角和是n•180°,因而(n+2)边形的内角和比n边形的内角和大n•180°-(n-2)•180=360°.故选:D.【点睛】本题考查多边形的内角和公式,熟记内角和公式是解题的关键.12、D【解析】

根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.【详解】根据折叠前后角相等可知∠DCA=∠ACO,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=4cm,∴∠DCA=∠CAO,∴∠ACO=∠CAO,∴AO=CO,在直角三角形BCO中,CO==5cm,∴AB=CD=AO+BO=3+5=8cm,在Rt△ABC中,AC=cm,故选:D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每题4分,共24分)13、1.【解析】

先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.【详解】连接AC,∵△ACD是直角三角形,∴,因为102+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×24×10-×6×8=120-24=1,故答案为:1.【点睛】本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、1【解析】

根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.【详解】解:根据题意,3k2-2k-1=-1,2k-1<1,

解得k=1或k=且k<,

∴k=1.

故答案为1.【点睛】本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.15、1【解析】

根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.【详解】解:∵四边形ABCD是正方形,∴∠ADC=90°,CD=AD,∵△DCE是正三角形,∴DE=DC=AD,∠CDE=∠DEC=60°,∴△ADE是等腰三角形,∠ADE=90°+60°=150°,∴∠DAE=∠DEA==15°,同理可得:∠CBE=∠CEB=15°,∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,故答案为:1.【点睛】此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.16、-6【解析】

连结OA,如图,利用三角形面积公式得到S△OAC=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【详解】解:连结,如图,轴,,,而,,,.故答案为:.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17、b(x﹣3)(b+1)【解析】

用提公因式法分解即可.【详解】原式=b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).故答案为:b(x﹣3)(b+1)【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.18、1【解析】

设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.【详解】解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°,解得,n=1.故答案为:1.【点睛】本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.三、解答题(共78分)19、(1)见解析;(2)y1>y2.【解析】

(1)根据两点确定一条直线作出函数图象即可;(2)根据y随x的增大而减小求解.【详解】(1)令y=0,则x=2令x=0,则y=1所以,点A的坐标为(2,0)点B的坐标为(0,1)画出函数图象如图:;(2)∵一次函数y=﹣x+1中,k=-<0,∴y随x的增大而减小∵﹣1<3∴y1>y2.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数图象,熟练掌握一次函数与坐标轴的交点坐标的求解方法是解题的关键.20、(1)见解析;(2)见解析;(3)154【解析】

(1)根据中心对称的性质找出各个对应点的坐标,顺次连接即可;(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;(3)BC扫过的面积=S扇形OBB1−S扇形OCC1,由此计算即可.【详解】(1)如图(2)如图(3)BC扫过的面积=S扇形OBB1−S扇形OCC1=【点睛】本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.21、(1)证明见解析;(2)∠DFC=60【解析】

(1)根据一组邻边相等的平行四边形是菱形证明即可;(2)利用菱形的性质证明ΔFDC为等边三角形可得结论.【详解】解:(1)证明:∵DE∥AC,AE∥BD,∴四边形DEAF为平行四边形∵四边形ABCD为矩形,∴AF=CF=12AC,DF=∴AF=DF=CF∴四边形DEAF为菱形(2)解:∵四边形DEAF为菱形,∴AE=FD∵AE=CD,∴FD=CD,∵FD=CF,∴ΔFDC为等边三角形∴∠DFC=【点睛】本题主要考查了菱形的判定和性质及等边三角形的判定和性质,综合应用两者的判定和性质是解题的关键.22、(1)详见解析;(2)详见解析【解析】

(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.【详解】(1)∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE;∴∠B=∠EDC;又∵AB=AC,∴AC=DE,∠B=∠ACB,∴∠EDC=∠ACD;∵在△ADC和△ECD中,AC=ED∠ACD=∠EDC∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°,∴▱ADCE是矩形.23、(1)21;(2)x1=,x2=−1.【解析】

(1)首先化为最简二次根式,然后根据二次根式的乘法法则进行计算;(2)利用因式分解法解方程即可.【详解】解:(1)原式;(2),,∴或,解得:x1=,x2=−1.【点睛】此题考查了解一元二次方程和二次根式的乘法运算,熟练掌握运算法则是解本题的关键.24、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.【解析】

(1)①根据中点和平行即可找出条件证明全等.②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.(2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.(3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.【详解】(1)①∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.∵AD=CD,∴△ADF≌△CDE.②由△ADF≌△CDE,∴AF=CE.∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.(2)四边形AFCE是矩形.∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论