陕西省西安市高新区三中学2024年数学八年级下册期末质量检测模拟试题含解析_第1页
陕西省西安市高新区三中学2024年数学八年级下册期末质量检测模拟试题含解析_第2页
陕西省西安市高新区三中学2024年数学八年级下册期末质量检测模拟试题含解析_第3页
陕西省西安市高新区三中学2024年数学八年级下册期末质量检测模拟试题含解析_第4页
陕西省西安市高新区三中学2024年数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市高新区三中学2024年数学八年级下册期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(-2,x2A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列描述一次函数y=﹣2x+5的图象和性质错误的是()A.y随x的增大而减小 B.直线与x轴交点的坐标是(0,5)C.当x>0时y<5 D.直线经过第一、二、四象限3.下列性质中,菱形具有而矩形不一定具有的是().A.对角线相等; B.对角线互相平分;C.对角线互相垂直; D.对角相等4.如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为()A.4 B.6 C.12 D.245.用反证法证明命题“在中,若,则”时,可以先假设()A. B. C. D.6.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C. D.47.我国“一带一路”战略给沿线国家和地区带来了很大的经济效益,沿线某地区居民2017年年人均收入为3800美元,预计2019年年人均收入将达到5000美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A.38001+C.38001+x2=8.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B.3 C.2 D.29.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是1510.已知一组数据2、x、7、3、5、3、2的众数是2,则这组数据的中位数是()A.2 B.2.5 C.3 D.511.如图,中,增加下列选项中的一个条件,不一定能判定它是矩形的是()A. B. C. D.12.在□中,,则的度数为(

)A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,,,斜边在轴上,点在轴正半轴上,点的坐标为.则直角边所在直线的解析式为__________.14.一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.15.计算:______________16.关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.17.如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.18.利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.三、解答题(共78分)19.(8分)化简:.20.(8分)如图,在中,于点D,E是的中点,若,求的长.21.(8分)(1)分解因式:a3-2a2b+ab2;(2)解方程:x2+12x+27=022.(10分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数y=-6x的图象经过原点,函数y=-6x+5的图象经与y轴交于点(0,5),即它可以看作直线y=-6x向上平移5个单位长度而得到。比较一次函数解析式y=kx+bk≠0与正比例函数解析式y=kxk≠0,容易得出:一次函数y=kx+bk≠0的图象可由直线y=kx通过向上(或向下)平移b个单位得到(当b>0(结论应用)一次函数y=x-3的图象可以看作正比例函数的图象向平移个单位长度得到;(类比思考)如果将直线y=-6x的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A(0,0)和B(1,-6)向右平移5个单位得到点C(5,0)和D(6,-6),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+bk≠0,将C(5,0)和D(6,-6)代入得到:5k+b=06k+b=-6解得k=-6b=30,所以直线CD的解析式为:y=-6x+30;①将直线y=-6x向左平移5个单位长度,则平移后得到的直线解析式为.②若先将直线y=-6x向左平移4个单位长度后,再向上平移5个单位长度,得到直线l,则直线l的解析式为(拓展应用)已知直线l:y=2x+3与直线关于x轴对称,求直线的解析式.23.(10分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.(1)让小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A,B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?24.(10分)如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE//CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.25.(12分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?26.为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭3月份用水量的众数、中位数和平均数;(3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?

参考答案一、选择题(每题4分,共48分)1、B【解析】

∵-20,x2+10,∴点P(-2,x2+1)故选B.2、B【解析】

由k的系数可判断A、D;利用不等式可判断C;令y=0可求得与x轴的交点坐标,可判断B,可得出答案.【详解】∵一次函数y=-2x+5中,k=-2<0,∴y随x的增大而减小,故A正确;又∵b=5,∴与y轴的交点在x轴的上方,∴直线经过第一、二、四象限,故D正确;∵当x=0时,y=5,且y随x的增大而减小,∴当x>0时,y<5,故C正确;在y=-2x+5中令y=0,可得x=2.5,∴直线与x轴的交点坐标为(2.5,0),故B错误;故选:B.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标是解题的关键,注意与不等式相结合.3、C【解析】

根据矩形和菱形的性质即可得出答案【详解】解:A.对角线相等是矩形具有的性质,菱形不一定具有;

B.对角线互相平分是菱形和矩形共有的性质;

C.对角线互相垂直是菱形具有的性质,矩形不一定具有;

D.邻边互相垂直是矩形具有的性质,菱形不一定具有.

故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键4、C【解析】

根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.【详解】解:由图可知,AB=BC=CD=DA,∴该四边形为菱形,又∵AC=4,BD=6,∴菱形的面积为4×6×=1.故选:C.【点睛】主要考查菱形的面积公式:两条对角线的积的一半,同时也考查了菱形的判定.5、B【解析】

根据反证法的第一步是假设结论不成立进而解答即可.【详解】解:用反证法证明命题“△ABC中,若∠A>∠B+∠C,则∠A>90°”时,应先假设∠A≤90°.故选:B.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.6、D【解析】

由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选D.【点睛】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.7、C【解析】

设2017年到2019年该地区居民年人均收入增长率为x,根据2017年和2019年该地区居民年人均收入,即可得出关于x的一元二次方程.【详解】解:设2017年到2019年该地区居民年人均收入增长率为x,

依题意,得:3800(1+x)2=5000,

故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8、B【解析】试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.在Rt△ABE中,∠BAE=30°,AB=,∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,∵四边形ABCD是矩形∴AD∥BC,∴∠C1AE=∠AEB=60°,∴△AEC1为等边三角形,同理△CC1E也为等边三角形,∴EC=EC1=AE=2,∴BC=BE+EC=3,故选B.9、B【解析】(1)80出现的次数最多,所以众数是80,A正确;(2)把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;(3)平均数是80,C正确;(4)极差是90-75=15,D正确.故选B10、C【解析】

根据众数定义首先求出x的值,再根据中位数的求法,求出中位数.【详解】解:数据2,x,7,3,5,3,2的众数是2,说明2出现的次数最多,x是未知数时2,3,均出现两次,.x=2.这组数据从小到大排列:2,2,2,3,3,5,7.处于中间位置的数是3,因而的中位数是3.故选:C.【点睛】本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.11、B【解析】

根据矩形的判定定理逐个判断即可.【详解】A、∵四边形ABCD是平行四边形,,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵,∴OA=OB,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.【点睛】本题考查了矩形的判定定理,能熟记矩形的判定定理的内容是解此题的关键,注意:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形.12、B【解析】

依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A=180°﹣∠B即可.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=216°,∴∠B=108°.∴∠A=180°﹣108°=72°.故选:B.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等,邻角互补.二、填空题(每题4分,共24分)13、y=x+1【解析】

根据题意可得△AOC与△COB相似,根据对应边成比例即可得到BO的长,利用待定系数法故可求解.【详解】∵A(2,0)∴AO=2,在Rt△AOC中,CO=,∴C(0,1)∵∴,又∴,又∴△AOC∽△COB∴,即∴BO=8∴B(-8,0)设直线BC的解析式为y=kx+b把B(-8,0),C(0,1)代入得解得∴边所在直线的解析式为y=x+1故答案为:y=x+1.【点睛】此题主要考查相似三角形的性质与判定及一次函数解析式的求解,解题的关键是熟知待定系数法的应用.14、20【解析】

根据频率的计算公式即可得到答案.【详解】解:所以可得参加比赛的人数为20人.故答案为20.【点睛】本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.15、3【解析】

根据负整数指数幂,零指数幂进行计算即可解答【详解】原式=2×2-1=3故答案为:3【点睛】此题考查负整数指数幂,零指数幂,掌握运算法则是解题关键16、【解析】

整理成一般式后,利用因式分解法求解可得.【详解】解:整理得:x2+8x+12=0,

(x+2)(x+1)=0,

x+2=0,x+1=0,

x1=-2,x2=-1.故答案为:.【点睛】本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.17、40°【解析】

根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【详解】∵四边形是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°-70°-70°=40°.故答案是:40°.【点睛】考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识.18、【解析】

的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.【详解】解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示由图像可得故答案为:【点睛】本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.三、解答题(共78分)19、【解析】

根据分式的运算法则即可取出答案.【详解】解:原式.【点睛】本题考查了分式的化简及学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20、DE=2.5.【解析】

利用勾股定理列式求出AC,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵,∴,∵E是的中点,∴.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.21、a(a-b)2,x=-3或x=-9.【解析】

(1)先提取公因式,在运用公式法因式分解即可。(2)运用因式分解法,即可解方程。【详解】解:(1)a3-2a2b+ab2=a(a2-2ab+b2)=a(a-b)2(2)x2+12x+27=0(x+3)(x+9)=27即:x+3=0或x+9=0解得:x=-3或x=-9【点睛】本题考查了因式分解及其应用,特别是用因式分解解一元二次方程是常用的方法。22、【结论应用】y=x,下,1;【类比思考】①y=-6x-10;②y=-6x-3;【拓展应用】y=-2x-1.【解析】【结论应用】根据题目材料中给出的结论即可求解;【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;【拓展应用】在直线l:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.【详解】解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.

故答案为y=x,下,1;

【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),

将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),

将C(-5,0)和D(-4,-6)代入得到:-5k+b=解得k=-6b=-30,

所以直线CD的解析式为:y=-6x-10.

故答案为y=-6x-10;

②在直线y=-6x上任意取两点A(0,0)和B(1,-6),

将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,

设直线CD的解析式为:y=kx+b(k≠0),

将C(-4,5)和D-4k+b解得k=-6b=-19

所以直线l的解析式为:y=-6x-3.

故答案为y=-6x-3;

【拓展应用】在直线l:y=2x+1上任意取两点A(0,1)和B(1,5),

则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD设直线CD的解析式为:y=kx+b(k≠0),

将C(0,-1)或D(1,-5)代入得到:b解得k=-2b=-3

所以直线l【点睛】本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.23、(1)小王共购进A水果25箱,B水果9箱;(2)应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.【解析】

(1)根据题意中的相等关系“A种水果x箱的批发价+B种水果y箱的批发价=1200元,A种水果赚的钱+B种水果赚的钱=215元”列方程组求解即可;(2)先用x表示y,列出利润w的关系式,再根据题意求出x的取值范围,然后根据一次函数的性质求出w的最大值及购进方案.【详解】解:(1)根据题意,得,即,解得.答:小王共购进A水果25箱,B水果9箱.(2)设获得的利润为w元,根据题意得,∵,∴,∵A水果的数量不得少于B水果的数量,∴,即,解得.∴,∵,∴w随x的增大而减小,∴当x=15时,w最大=225,此时.即应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的解法和一次函数的性质,正确理解题意列出方程组、灵活应用一次函数的性质是解此题的关键.24、(1)证明见解析;(2)AB=.【解析】

(1)根据AAS证明△ABE≌△DCF,由全等三角形对应边相等得到BE=CF,根据一组对边平行且相等的四边形是平行四边形即可得到结论;(2)利用全等三角形的性质证明AB=CD即可得出结论.【详解】(1)∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD.∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=1.∵AD=10,AB=DC,∴AB(10﹣1).【点睛】本题考查了菱形的性质,全等三角形的判定和性质,平行四边形的判定等知识,解题的关键是熟练掌握基本知识,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论