江苏省海安县城南实验中学2024年八年级下册数学期末质量检测模拟试题含解析_第1页
江苏省海安县城南实验中学2024年八年级下册数学期末质量检测模拟试题含解析_第2页
江苏省海安县城南实验中学2024年八年级下册数学期末质量检测模拟试题含解析_第3页
江苏省海安县城南实验中学2024年八年级下册数学期末质量检测模拟试题含解析_第4页
江苏省海安县城南实验中学2024年八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省海安县城南实验中学2024年八年级下册数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.2.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE垂直平分BO,若AE=23cm,则OD=A.2cm B.3cm C.4cm D.6cm3.下列命题中,正确的是()A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点B.平行四边形是轴对称图形C.三角形的中位线将三角形分成面积相等的两个部分D.一组对边平行,一组对角相等的四边形是平行四边形4.平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A. B.C. D.6.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y27.下列等式正确的是()A. B. C. D.8.为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指()A.200B.我县2019年八年级学生期末数学成绩C.被抽取的200名八年级学生D.被抽取的200名我县八年级学生期末数学成绩9.点A(1,-2)在正比例函数的图象上,则k的值是().A.1 B.-2 C. D.10.已知二次函数的与的部分对应值如下表:

-1

0

1

3

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有()A.1个 B.2个 C.3个 D.1个二、填空题(每小题3分,共24分)11.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.12.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B=__________.13.将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.14.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________15.当二次根式的值最小时,x=______.16.如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.17.将直线向上平移1个单位,那么平移后所得直线的表达式是_______________18.化简:=______.三、解答题(共66分)19.(10分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.(1)画出关于轴的对称图形,并写出其顶点坐标;(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.20.(6分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.(不证明)21.(6分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.22.(8分)如图,某项研究表明,大拇指与小拇指尽量张开时,两指尖的距离称为指距.如表是测得的指距与身高的一组数据:指距d(cm)192021身高h(cm)151160169(1)你能确定身高h与指距d之间的函数关系式吗?(2)若某人的身高为196cm,一般情况下他的指距应是多少?23.(8分)解不等式组:,并把它的解集在数轴上表示出来.24.(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<70a0.2870≤x<80160.3280≤x<90100.2090≤x≤100cb合计501.00(1)表中的a=______,b=______,c=______;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.25.(10分)利用幂的运算性质计算:26.(10分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

解:B、C、D都是轴对称图形,即对称轴如下红色线;故选A.【点睛】此题考查轴对称图形和中心对称图形的概念.2、C【解析】

由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB,∵AE=23cm∴OE=2cm,∴OD=OB=2OE=4cm;故选:C.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.3、D【解析】

由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.【详解】解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;B.平行四边形是轴对称图形;不正确;C.三角形的中位线将三角形分成面积相等的两个部分;不正确;D.一组对边平行,一组对角相等的四边形是平行四边形;正确;故选:D.【点睛】本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.4、D【解析】

根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【详解】平行四边形的对角相等,对角线互相平分,对边平行且相等.故选D.【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.5、C【解析】

张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢.【详解】根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢,所以选项C比较符合题意.故选C【点睛】考核知识点:函数图象的判断.理解题意是关键.6、B【解析】

先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.7、B【解析】

根据平方根、算术平方根的求法,对二次根式进行化简即可.【详解】A.=2,此选项错误;B.=2,此选项正确;C.=﹣2,此选项错误;D.=2,此选项错误;故选:B.【点睛】本题考查了二次根式的化简和求值,是基础知识比较简单.8、D【解析】

根据样本是总体中所抽取的一部分个体解答即可.【详解】本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.故选:D.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、B【解析】

直接把点(1,-2)代入正比例函数y=kx(k≠0),求出k的值即可.【详解】∵正比例函数y=kx(k≠0)的图象经过点(1,-2),∴-2=k.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10、B【解析】

解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=,故②错误;当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二、填空题(每小题3分,共24分)11、电影票的售价电影票的张数,票房收入.【解析】

根据常量,变量的定义进行填空即可.【详解】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为:电影票的售价;电影票的张数,票房收入.【点睛】本题考查了常量和变量,掌握常量和变量的定义是解题的关键.12、77°【解析】

先根据旋转的性质得∠B=∠AB′C′,AC=AC′,∠CAC′=90°,则可判断△ACC′为等腰直角三角形,所以∠ACC′=∠AC′C=45°,然后根据三角形外角性质计算出∠AB′C′,从而得到∠B的度数.【详解】∵△ABC绕点A顺时针旋转90°后得到的△AB′C′,∴∠B=∠AB′C′,AC=AC′,∠CAC′=90°,∴△ACC′为等腰直角三角形,∴∠ACC′=∠AC′C=45°,∴∠AB′C′=∠B′CC′+∠CC′B′=45°+32°=77°,∴∠B=77°.故答案为77°.【点睛】此题考查旋转的性质,解题关键在于利用三角形外角性质.13、【解析】由题意得:平移后的解析式为:y=2x+1-2=2x-1,即.所得直线的表达式是y=2x-1.故答案为y=2x-1.14、①②④【解析】

根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a-)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.【点睛】本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.15、1.【解析】

直接利用二次根式的定义分析得出答案.【详解】∵二次根式的值最小,∴2x﹣6=0,解得:x=1,故答案为1.【点睛】本题主要考查了二次根式的定义,正确把握定义是解题关键.16、【解析】

根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.【详解】解:∵当时,随着的增大而增大,∴反比例函数图象在第四象限有一支,∴,解得,故答案为:.【点睛】本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.17、【解析】

平移时k的值不变,只有b发生变化.【详解】原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,那么新直线的k=2,b=0+1=1,∴新直线的解析式为y=2x+1.故答案为:y=2x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.18、a+1【解析】

先根据同分母分式加减法进行计算,再约分化简分式即可.【详解】.故答案为a+1【点睛】本题考核知识点:分式的加减.解题关键点:熟记分式的加减法则,分式的约分.三、解答题(共66分)19、(1)图详见解析,;(2)图详见解析,【解析】

(1)分别作出,,的对应点,,即可.(2)分别作出,,的对应点,,即可.【详解】解:(1)△如图所示.,,;(2)△如图所示.,,.【点睛】本题考查轴对称变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)平行四边形;(2)互相垂直;(3)菱形.【解析】分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出矩形;(3)、根据菱形的性质和三角形中位线的性质得出平行四边形,然后根据对角线垂直得出矩形.详解:(1)证明:连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.点睛:本题主要考查的就是三角形中位线的性质以及特殊平行四边形的判定,属于中等难度题型.三角形的中位线平行且等于第三边的一半.解决这个问题的关键就是要明确特殊平行四边形的判定定理.21、点B的坐标为,【解析】

根据一次函数的性质,与y轴交于点B,即,得解;将A坐标代入解析式即可得解.【详解】当时,,点B的坐标为将点A的对应值,代入得,∴【点睛】此题主要考查一次函数的性质,熟练掌握,即可解题.22、(1)身高h与指距d之间的函数关系式为h=9d-20;(2)一般情况下他的指距应是1cm【解析】

(1)根据题意设h与d之间的函数关系式为:h=kd+b,从表格中取两组数据,利用待定系数法,求得函数关系式即可;(2)把h=196代入函数解析式即可求得.【详解】解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,解得,∴h=9d-20,当d=19时,h=9×19-20=151,符合题意,∴身高h与指距d之间的函数关系式为:h=9d-20;(2)当h=196时,196=9d-20,解得d=1.故一般情况下他的指距应是1cm.【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的设出解析式,再把对应值代入求解.23、,解集在数轴上表示如图见解析.【解析】

先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【详解】解:由①得:由②得:不等式组解集为解集在数轴上表示如图:【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能求出不等式组的解集,难度适中.24、(1)14;0.08;4;(2)详见解析;(3)80.【解析】

(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【详解】解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论