




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东省广州市花都区八年级数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.与最接近的整数是()A.5 B.1 C.1.5 D.72.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.在下列式子中,x可以取1和2的是()A. B. C. D.4.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.165.当x<a<0时,与ax的大小关系是().A.>ax B.≥ax C.<ax D.≤ax6.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为()A. B. C. D.7.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%8.下列各式中,运算正确的是()A. B. C. D.2+=29.点A(1,-2)关于x轴对称的点的坐标是()A.(1,-2) B.(-1,2) C.(-1,-2) D.(1,2)10.如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.12.在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.13.如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.14.关于一元二次方程有两个相等的实数根,则的值是__________.15.甲、乙两名同学的5次数学成绩情况统计结果如下表:平均分方差标准差甲8042乙80164根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙16.如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.17.如图,点P是直线y=3上的动点,连接PO并将PO绕P点旋转90°到PO′,当点O′刚好落在双曲线(x>0)上时,点P的横坐标所有可能值为_____.18.已知矩形ABCD,给出三个关系式:①AB=BC;②AC=BD;③AC⊥BD,如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________.三、解答题(共66分)19.(10分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于D,(1)直接写直线y=2x+2与坐标轴所围成的图形的面积(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.问:AP与PF有怎样的数量关系和位置关系?并说明理由;(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.20.(6分)解方程:x2﹣6x+8=1.21.(6分)如图,在正方形内任取一点,连接,在⊿外分别以为边作正方形和.⑴.按题意,在图中补全符合条件的图形;⑵.连接,求证:⊿≌⊿;⑶.在补全的图形中,求证:∥.22.(8分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.23.(8分)如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.24.(8分)如图,已知,在一条直线上,.求证:(1);(2)四边形是平行四边形.25.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).捐款额(元)频数百分比37.5%717.5%ab1025%615%总计100%(1)填空:________,________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在的学生人数.26.(10分)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
由题意可知31与37最接近,即与最接近,从而得出答案.【详解】解:∵31<37<49,∴1<<7,∵37与31最接近,∴与最接近的整数是1.故选:B.【点睛】此题主要考查了无理数的估算能力,掌握估算的方法是解题的关键.2、A【解析】
x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.【点睛】本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.3、B【解析】
根据分式和二次根式有意义的条件即可求出答.【详解】解:A.x﹣1≠0,所以x≠1,故A不可以取1B.x﹣1≥0,所以x≥1,故B可以取1和2C.x﹣2≥0,所以x≥2,故C不可以取1D.x﹣2≠0,所以x≠2,故D不可以取2故选:B.【点睛】本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.4、C【解析】试题解析:5、A【解析】根据不等式的基本性质3,不等式的两边同乘以一个负数,不等号的方向改变,可得x2>ax.故选A.6、C【解析】
把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.【详解】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
在Rt△ACB′,所以它爬行的最短路程为13cm.
故选:C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.7、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8、C【解析】
根据二次根式的性质对A进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的加减运算对B、D进行判断.【详解】A.原式=|−2|=2,所以A选项错误;B.原式=,所以B选项错误;C.,所以C选项正确;D.2与不能合并,所以D选项错误。故选C【点睛】此题考查二次根式的混合运算,难度不大9、D【解析】
根据关于横轴对称的点,横坐标不变,纵坐标变成相反数进行求解即可.【详解】点P(m,n)关于x轴对称点的坐标P′(m,-n),所以点A(1,-2)关于x轴对称的点的坐标是(1,2),故选D.10、D【解析】
根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.【详解】解:∵正方形ABCD的边长为1,∴AB=BC=CD=DA=1由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,故选D.【点睛】此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.二、填空题(每小题3分,共24分)11、【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.【详解】解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.【点睛】本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.12、1.【解析】
延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可得出答案.【详解】如图所示,延长CM交AB于G,延长CN交AB于H,∵∠ACB=90°,AC=6,BC=8,∴由勾股定理得AB=10,在△BMC和△BMG中,,∴△BMC≌△BMG,∴BG=BC=8,CM=MG,∴AG=1,同理,AH=AC=6,CN=NH,∴GH=4,∵CM=MG,CN=NH,∴MN=GH=1.故答案为:1.【点睛】本题考查了等腰三角形的判定和性质、三角形的中位线.利用全等证出三角形BCE与三角形ACH是等腰三角形是解题的关键.13、【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.【详解】设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.故答案为:.【点睛】本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.14、16【解析】
根据根判别式得出答案.【详解】因为关于一元二次方程有两个相等的实数根,所以解得k=16故答案为:16【点睛】考核知识点:根判别式.理解根判别式的意义是关键.15、甲【解析】
根据方差的定义,方差越小数据越稳定.【详解】∵S甲2=4,S乙2=16,∴S甲2=4<S乙2=16,∴成绩稳定的是甲,故答案为:甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、【解析】
连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.【详解】解:如图,连接OB,过点O作OD⊥AB于D,∵在的垂直平分线上,∴OB=OC,∵,,,∴OA2+OB2=32+42=25=AB2,∴△ABC为直角三角形,∵S△ABO=AO·OB=AB·OD,∴OD==.故答案为.【点睛】此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.17、,.【解析】
分点P在由在y轴的左侧和点P在y轴的右侧两种情况求解即可.【详解】当点P在由在y轴的左侧时,如图1,过点P作PM⊥x轴于点M,过点O′作O′N垂直于直线y=3于点N,∵∠OPN+∠NPO′=90°,∠PO′N+∠NPO′=90°,∴∠OPN=∠PO′N,∵直线y=3与x轴平行,∴∠POM=∠OPN,∴∠POM=∠PO′N,在△POM和△PO′N中,,∴△POM≌△PO′N,∴OM=O′N,PM=PN,设点P的横坐标为t,则OM=O′N=-t,PM=PN=3,∴GN=3+t,∴点O′的坐标为(3+t,3-t),∵点O′在双曲线(x>0)上,∴(3+t)(3-t)=6,解得,t=(舍去)或t=-,∴点P的横坐标为-;当点P在由在y轴的右侧时,如图2,过点O′作O′H垂直于直线y=3于点H,类比图1的方法易求点P的横坐标为,如图3,过点P作PE⊥x轴于点E,过点O′作O′F垂直于直线y=3于点F,类比图1的方法易求点P的横坐标为,综上,点P的横坐标为,.故答案为,.【点睛】本题是反比例函数与几何的综合题,正确作出辅助线,构造全等三角形是解决问题的关键,解决问题时要考虑全面,不要漏解.18、①一组邻边相等的矩形是正方形【解析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.【详解】解:∵四边形ABCD是矩形,AB=BC,∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).故答案为:①,一组邻边相等的矩形是正方形.【点睛】本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.三、解答题(共66分)19、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析【解析】
(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.【详解】(1)∵直线y=1x+1交x轴于A,交y轴于D,令x=0,解得y=1,∴D(0,1)令y=0,解得x=-1,∴A(-1,0)∴AO=1,DO=1,∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;(1)AP=PF且AP⊥PF,理由如下:过点A作AH⊥DB,如图,∵A(-1,0),D(0,1)∴AD===AB,∵四边形ABCD是正方形∴BD==,∴AH=DH=BD=,而PG=,∴DP+BG=,而DH=DP+PH=∴PH=BG,∵∠GBF=45°∴BG=GF=HP∴Rt△APH≌Rt△PFG,∴AP=PF,∠PAH=∠PFG∴∠APH+∠GPF=90°即AP⊥PF;(3)PD1+BG1=PG1,理由如下:如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,∴∠MDP=90°,∴DP1+BG1=PM1,又∵∠PAG=45°,∴∠DAP+∠BAG=45°,∴∠MAD+∠DAP=45°,即∠MAP=45°,而AM=AG,∴△AMP≌△AGP,∴MP=PG,∴PD1+BG1=PG1【点睛】此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.20、x1=2x2=2.【解析】
应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.21、(1)补全图形见解析;(2)证明见解析;(3)证明见解析.【解析】分析:⑴问要注意“在⊿外”作正方形;本题的⑵问根据正方形的性质得出的结论为三角形全等提供条件,比较简单;本题额⑶问可以连接正方形的对角线后,然后利用“内错角相等,两直线平行.”来证明.详解:⑴.如图1,在⊿外分别以为边作正方形和.(要注意是在“⊿外”作正方形,见图1)⑵.在图1的基础上连接.∵四边形、和都是正方形∴∴∴∴⊿≌⊿()⑶.继续在图1的基础上连接.(见图2)∵四边形是正方形,且已证∴∴∵⊿≌⊿∴∴∴即∴∥.点睛:本题的⑴问要注意的是在“在⊿外”作正方形,所以不要作在三角形内部;本题的⑵问主要是利用正方形提供的条件来证明两个三角形全等,比较简单,常规证法;本题的⑶问巧妙利用与正方形的对角线构成的内错角来提供平行的条件,需正方形和全等三角形来综合提供.22、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.【解析】
(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.【详解】(1)由题意得:vt=900,即:v=,答:(2)当t=2.5时,v==360,当t=3时,v==300,所以放水速度的范围为300≤v≤360立方米/小时,答:所以放水速度的范围为300≤x≤360立方米/小时.【点睛】考查求反比例函数的关系式以及反比例函数图象上点的坐标特点,解题关键在于根据常用的数量关系得出函数关系式.23、(1)见解析;(2)∠BCF=15°【解析】
(1)利用正方形的性质得出AC⊥DB,BC//AD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;(2)利用正方形的性质结合直角三角形的性质得出∠OFC=30°,即可得出答案.【详解】解:(1)证明:∵ABCD是正方形,∴AC⊥DB,BC∥AD∵CE⊥AC∴∠AOD=∠ACE=90°∴BD∥CE∴BCED是平行四边形(2)如图:连接AF,∵ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025锁定加压接骨板联合同种异体骨治疗桡骨远端C型骨折
- 2025年农业合作社经营合同
- 《2025工程咨询服务合同关键点》
- 别墅群施工组织设计-冬宫一期
- 标准施工招标文件范本
- 2025年商洛货车上岗证理论模拟考试题库
- 2025年广西货运从业资格证模拟考试题
- 2025年云南考货运从业资格证题库答案
- 2025年新疆货运从业资格证考试模拟题
- 单原子铁催化剂同步辐射吸收谱
- 水杨酸产品原材料供应与需求分析
- 1《谏太宗十思疏》公开课一等奖创新教学设计统编版高中语文必修下册
- 烈焰卫士观后感450字
- GB/T 36548-2024电化学储能电站接入电网测试规程
- HJ 179-2018 石灰石石灰-石膏湿法烟气脱硫工程技术规范
- DZ-T+0227-2010地质岩心钻探规程
- 幼儿园中班绘本课件-《小金鱼逃走了》
- 《施工现场临时用电安全技术规范》jgj46-2005
- π型RC/LC滤波电路-电路
- 《纸质文物修复与保护》课件-38纸浆补书实训
- 刑事报案材料模板(涉嫌诈骗罪)
评论
0/150
提交评论