版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市五校2024年八年级数学第二学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,若一次函数的图象与x轴的交于点,与y轴交于点下列结论:①关于x的方程的解为;②随x的增大而减小;③关于x的方程的解为;④关于x的不等式的解为其中所有正确的为A.①②③ B.①③ C.①②④ D.②④2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时 B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇 D.甲到B地比乙到A地早小时3.下列多项式中,能用公式法分解因式的是()A. B. C. D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE垂直平分BO,若AE=23cm,则OD=A.2cm B.3cm C.4cm D.6cm5.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.6.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积可以表示为()A.4S1 B.4S2 C.4S2+S3 D.2S1+8S37.将一次函数图像向下平移个单位,与双曲线交于点A,与轴交于点B,则=()A. B. C. D.8.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补 B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分 D.全等三角形的对应边相等9.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)10.如图,正方形OABC的兩辺OA、OC分別在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(1,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠C=90°,∠A=30°,BC=2,D,E分别是AC,BC的中点,则DE的长等于_____.12.如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.13.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.14.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)15.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.16.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.17.如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为.18.已知y=xm-2+3是一次函数,则m=________
.三、解答题(共66分)19.(10分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?20.(6分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)写出y关于x的函数表达式及自变量x的取值范围;(2)在如图直角坐标系中,用描点法画出所求函数图象;(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.21.(6分)如图,已知四边形为正方形,,点为对角线上一动点,连接,过点作.交于点,以、为邻边作矩形,连接.(1)求证:矩形是正方形;(2)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.22.(8分)计算:÷+×﹣.23.(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24.(8分)如图,正方形的对角线、相交于点,,.(1)求证:四边形是正方形.(2)若,则点到边的距离为______.25.(10分)如图,在△ABC中,AB=13,BC=21,AD=12,且AD⊥BC,垂足为点D,求AC的长.26.(10分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).⑴求和的值;⑵过点作直线平行轴交轴于点,连结AC,求△的面积.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据一次函数的性质进行分析即可.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-,0);当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小.根据2分析函数与方程和不等式的关系.【详解】解:根据题意可知:由直线与x轴交点坐标可知关于x的方程的解为;由图象可知随x的增大而减小;由直线与y轴的交点坐标可知关于x的方程的解为;由函数图象分析出y>0时,关于x的不等式的解为所以,正确结论是:①②③.故选A.【点睛】本题考核知识点:一次函数的性质.解题关键点:结合函数的图象分析问题.2、D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25=80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3、D【解析】
利用平方差公式及完全平方公式的结构特征判断即可.【详解】解:=(n+m)(n−m),故选D.【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.4、C【解析】
由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB,∵AE=23cm∴OE=2cm,∴OD=OB=2OE=4cm;故选:C.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.5、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.6、A【解析】
设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【详解】设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a-c)=a2-c2,∴S2=S1-S3,∴S3=2S1-2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.故选A.【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系7、B【解析】试题分析:先求得一次函数图像向下平移个单位得到的函数关系式,即可求的点A、B的坐标,从而可以求得结果.解:将一次函数图像向下平移个单位得到当时,,即点A的坐标为(,0),则由得所以故选B.考点:函数综合题点评:函数综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.8、B【解析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.10、C【解析】
根据题意,分顺时针旋转和逆时针旋转两种情况,求出点D′到x轴、y轴的距离,即可判断出旋转后点D的对应点D′的坐标是多少即可.【详解】解:因为点D(5,3)在边AB上,
所以AB=BC=5,BD=5-3=2;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=2,
所以D′(-2,0);
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为10,到y轴的距离为2,
所以D′(2,10),
综上,旋转后点D的对应点D′的坐标为(-2,0)或(2,10).
故选C.【点睛】本题考查坐标与图形变化-旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.二、填空题(每小题3分,共24分)11、1【解析】
根据直角三角形的性质及三角形的中位线即可求解.【详解】解:∵∠C=90°,∠A=30°,∴AB=1BC=4,∵D,E分别是AC,BC的中点,∴DE=AB=1,故答案为:1.【点睛】此题主要考查三角形的中位线,解题的关键是熟知含30°的直角三角形的性质.12、4米【解析】
过点C作CE⊥AB于点E,则人离墙的距离为CE,在Rt△ACE中,根据勾股定理列式计算即可得到答案.【详解】如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,过点C作CE⊥AB于点E,则人离墙的距离为CE,由题意可知AE=AB-BE=4.5-1.5=3(米).当人离传感器A的距离AC=5米时,灯发光.此时,在Rt△ACE中,根据勾股定理可得,CE2=AC2-AE2=52-32=42,∴CE=4米.即人走到离墙4米远时,灯刚好发光.【点睛】本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.13、(1,3)或(4,3)【解析】
根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.【详解】∵C(0,3),A(9,0)∴B的坐标为(9,3)①当P运动到图①所示的位置时此时DO=PD=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4∴OE=OD-DE=1此时P点的坐标为(1,3);②当P运动到图②所示的位置时此时DO=PO=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4此时P点的坐标为(4,3);③当P运动到图③所示的位置时此时OD=PD=5过点P作PE⊥OA于点E在RT△OPE中,根据勾股定理4∴OE=OD+DE=9此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.综上所述,P的坐标为(1,3)或(4,3)【点睛】本题主要考查等腰三角形的判定以及勾股定理的应用.14、抽样调查【解析】
根据普查和抽样调查的定义,显然此题属于抽样调查.【详解】由于只是取了一点品尝,所以应该是抽样调查.
故答案为:抽样调查.【点睛】此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.15、②③④【解析】分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;故答案为②③.点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.16、140°【解析】
先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,
则每个内角的度数=.
故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.17、【解析】试题分析:根据勾股定理即可求得结果.由题意得,正方形M与正方形N的面积之和为考点:本题考查的是勾股定理点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.18、3【解析】
一次函数自变量的最高次方为1,据此列式即可求出m.【详解】由题意得:m-2=1,∴m=3,故答案为3.【点睛】此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.三、解答题(共66分)19、第一次买了11本资料.【解析】
设第一次买了x本资料,根据“比上次多买了21本”表示出另外一个未知数,再根据等量关系“第一次用121元买了若干本资料,第二次又用241元在同一商家买同样的资料,这次商家每本优惠4元”列出方程,即可求解.【详解】设第一次买了x本资料,根据题意,得:-=4整理,得:x2+51x﹣611=1.解得:x1=﹣61,x2=11,经检验:它们都是方程的根,但x1=﹣61不符合题意,舍去,答:第一次买了11本资料.【点睛】该题主要考查了列分式方程解应用题,解题的关键是正确分析已知设出未知数,找准等量关系列出方程,然后解方程即可求解.另外该题解完之后要尝试其他的解法,以求一题多解,举一反三.20、(1)y(x>0);(2)答案见解析;(3)8.【解析】
(1)根据平行四边形的面积公式,列出函数关系式即可;(2)利用描点法画出函数图象即可;(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.【详解】(1)由题意,xy=18,所以y(x>0);(2)列表如下:函数图象如图所示:(3)如图作DE⊥BC交BC的延长线于E,∵BC=4,∴DE,∵BD,∴BE6,∴EC=2,∴CD,∴此平行四边形的周长=8.【点睛】本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题21、(1)见解析(2)是定值,8【解析】
(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,即可得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;
(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.【详解】(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,
∵正方形ABCD,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四边形EMCN为正方形,
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
(2)CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,∴△ADE≌△CDG(SAS),
∴AE=CG,
∴AC=AE+CE=AB=×4=8,
∴CE+CG=8是定值.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质与判定,三角形的全等的性质和判定,勾股定理的综合运用,解本题的关键是作出辅助线,构造三角形全等,利用全等三角形的对应边相等得出结论.22、.【解析】
先进行二次根式化简和乘除运算,然后再进行加减即可.【详解】解:原式=4﹣.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.23、解:(1)yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yA>yB时,27x+270>30x+240,得x<10;当yA<yB时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,yA=27×15+270=675(元),先选择B超市购买10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《传感与测试技术》2023-2024学年第一学期期末试卷
- 国有土地委托经营管理合同
- 合同编504条与民法典61条
- 大班音乐课件P《春雨沙沙》
- 2024年六盘水客运从业资格证考试一点通
- 2024个人短期借款合同书
- 会议备忘录范文6篇-20220308150300
- 2024中国工商银行借贷合同范本
- 2024版家政服务合同样本
- 2024个人小额贷款合同书范本
- 《万维网服务大揭秘》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 2024年新华社招聘应届毕业生及留学回国人员129人历年高频难、易错点500题模拟试题附带答案详解
- 人教版(2024新版)七年级上册英语Unit 5单元测试卷(含答案)
- (完整版)新概念英语第一册单词表(打印版)
- 美食行业外卖平台配送效率提升方案
- 中国民用航空局信息中心招聘笔试题库2024
- 芯片设计基础知识题库100道及答案(完整版)
- 2025届高考语文一轮复习:文言文概括和分析 课件
- 年产10万套新能源车电池托盘项目可行性研究报告写作模板-申批备案
- 《大学美育》 课件 4.模块五 第二十四章 时空综合的影视艺术之美
- 2022-2023学年广东省广州市天河区六年级(上)期末数学试卷(含答案)
评论
0/150
提交评论