内蒙古准格尔旗2024年八年级数学第二学期期末统考试题含解析_第1页
内蒙古准格尔旗2024年八年级数学第二学期期末统考试题含解析_第2页
内蒙古准格尔旗2024年八年级数学第二学期期末统考试题含解析_第3页
内蒙古准格尔旗2024年八年级数学第二学期期末统考试题含解析_第4页
内蒙古准格尔旗2024年八年级数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古准格尔旗2024年八年级数学第二学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.32.函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>23.式子有意义,则实数a的取值范围是()A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>24.坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过()A.第一、二象限 B.第一、四象限C.第二、三象限 D.第二、四象限5.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5706.如图,从几何图形的角度看,下列这些图案既是中心对称图形又是轴对称图形的是()A. B. C. D.7.若等腰三角形底边长为8,腰长是方程的一个根,则这个三角形的周长是()A.16 B.18 C.16或18 D.218.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(

)A.4 B.3 C.2 D.9.下列事件中,属于随机事件的是()A.没有水分,种子发芽; B.小张买了一张彩票中500万大奖;C.抛一枚骰子,正面向上的点数是7; D.367人中至少有2人的生日相同.10.二次根式中,字母a的取值范围是()A.a<﹣ B.a>﹣ C.a D.a二、填空题(每小题3分,共24分)11.已知一个函数的图象与反比例函数的图象关于轴对称,则这个函数的表达式是__________.12.化简:______.13.在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.14.函数为任意实数)的图象必经过定点,则该点坐标为____.15.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?16.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.17.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.18.方程=2的解是_________三、解答题(共66分)19.(10分)已知,如图(1),a、b、c是△ABC的三边,且使得关于x的方程(b+c)x2+2ax﹣c+b=0有两个相等的实数根,同时使得关于x的方程x2+2ax+c2=0也有两个相等的实数根,D为B点关于AC的对称点.(1)判断△ABC与四边形ABCD的形状并给出证明;(2)P为AC上一点,且PM⊥PD,PM交BC于M,延长DP交AB于N,赛赛猜想CD、CM、CP三者之间的数量关系为CM+CD=CP,请你判断他的猜想是否正确,并给出证明;(3)已知如图(2),Q为AB上一点,连接CQ,并将CQ逆时针旋转90°至CG,连接QG,H为GQ的中点,连接HD,试求出.20.(6分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.21.(6分)如图,△ABC的面积为63,D是BC上的一点,且BD:BC=2:3,DE∥AC交AB于点E,延长DE到F,使FE:ED=2:1.连结CF交AB点于G.(1)求△BDE的面积;(2)求的值;(3)求△ACG的面积.22.(8分)(1)计算并观察下列各式:第个:;第个:;第个:;······这些等式反映出多项式乘法的某种运算规律.(2)猜想:若为大于的正整数,则;(3)利用(2)的猜想计算;(4)拓广与应用.23.(8分)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.(1)求证:四边形ABCD是矩形;(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.24.(8分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.25.(10分)解分式方程:(1);(2)=1;26.(10分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时出发,已知先遣队的行进速度是大部队行进速度的1.2倍,预计先遣队比大部队早0.5小时到达目的地,求先遣队与大部队的行进速度。

参考答案一、选择题(每小题3分,共30分)1、D【解析】

∵由已知和平移的性质,△ABC、△DCE都是是等边三角形,∴∠ACB=∠DCE=60°,AC=CD.∴∠ACD=180°-∠ACB-∠DCE=60°.∴△ACD是等边三角形.∴AD=AC=BC.故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形.∴BD、AC互相平分,故②正确.由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.2、A【解析】

根据分母不为0列式求值即可.【详解】由题意得x﹣1≠0,解得:x≠1.故选:A.【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.3、C【解析】

根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.4、A【解析】

根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.【详解】∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选:A.【点睛】本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.5、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.6、B【解析】

根据轴对称图形和中心对称图形的定义对各个选项一一判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形;B.既是轴对称图形,又是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形和轴对称图形的识别.熟练应用中心对称图形和轴对称图形的概念进行判断是解题的关键.7、B【解析】

先把方程的根解出来,然后分别让两个根作为腰长,再根据三角形三边关系判断是否能组成三角形,即可得出答案.【详解】解:∵腰长是方程的一个根,解方程得:∴腰长可以为4或者5;当腰长为4时,三角形边长为:4,4,8,∵,根据三角形三边长度关系:两边之和要大于第三边可得:4,4,8三条线段不能构成三角形,∴舍去;当腰长为5时,三角形边长为:5,5,8,经检验三条线段可以构成三角形;∴三角形的三边长为:5,5,8,周长为:18.故答案为B.【点睛】本题考查一元二次方程的解,以及三角形三边关系的验证,当涉及到等腰三角形的题目要进行分类讨论,讨论后一定不要忘记如果求得三角形的三边长,必须根据三角形三边关系再进行判断,看求得的三边长度是否能构成三角形.8、B【解析】

首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.9、B【解析】A选项中,因为“没有水分,种子发芽”是“确定事件中的不可能事件”,所以不能选A;B选项中,因为“小张买了一张彩票中500万大奖”是“随机事件”,所以可以选B;C选项中,因为“抛一枚骰子,正面向上的点数是7”是“确定事件中的不可能事件”,所以不能选C;D选项中,因为“367人中至少有2人的生日相同”是“确定事件中的必然事件”,所以不能选D.故选B.10、B【解析】

根据二次根式以及分式有意义的条件即可解答.【详解】根据题意知2a+1>0,解得:a>﹣,故选B.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式与分式有意义的条件,本题属于基础题型.二、填空题(每小题3分,共24分)11、【解析】

直接根据平面直角坐标系中,关于y轴对称的特点得出答案.【详解】解:∵反比例函数的图象关于y轴对称的函数x互为相反数,y不变,∴,故答案为:.【点睛】本题考查反比例函数与几何变换,掌握关于y轴对称时,y不变,x互为相反数是解题关键.12、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.13、答案为甲【解析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:=83(分),=82(分);经计算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故答案为甲【点睛】本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14、(1,2)【解析】

先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.【点睛】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.15、8【解析】

根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.【详解】解:设:在甲机换了x次.乙机换了y次.丙机换了z次.在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴由②-①,得:2y+8z=68,∴y+4z=34,∴y=34-4z,结合x+y+z=12,能满足上面两式的值为:∴;即在丙机换了8次.故答案为:8.【点睛】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.16、3.【解析】试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.17、5或【解析】

利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.【详解】当这个直角三角形的两直角边分别为、时,则该三角形的斜边的长为:(),当这个直角三角形的一条直角边为,斜边为时,则该三角形的另一条直角边的长为:().故答案为或.【点睛】此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.18、【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4故答案为:【点睛】本题考核知识点:二次根式,无理方程.解题关键点:化无理方程为整式方程.三、解答题(共66分)19、(1)△ABC是等腰直角三角形.四边形ABCD是正方形;(2)猜想正确.(3)【解析】

(1)结论:△ABC是等腰直角三角形.四边形ABCD是正方形;根据根的判别式=0即可解决问题;(2)猜想正确.如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEM≌△PFD即可解决问题;(3)连接DG、CH,作QK⊥CD于K.则四边形BCKQ是矩形.只要证明△CKH≌△GDH,△DHK是等腰直角三角形即可解决问题.【详解】解:(1)结论:△ABC是等腰直角三角形.四边形ABCD是正方形;理由:∵关于x的方程(b+c)x2+2ax﹣c+b=0有两个相等的实数根,∴4a2﹣4(b+c)(b﹣c)=0,∴a2+c2=b2,∴∠B=90°,又∵关于x的方程x2+2ax+c2=0也有两个相等的实数根,∴4a2﹣4c2=0,∴a=c,∴△ABC是等腰直角三角形,∵D、B关于AC对称,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∵∠B=90°,∴四边形ABCD是正方形.(2)猜想正确.理由:如图1中,作PE⊥BC于E,PF⊥CD于F.∵四边形ABCD是正方形,∴∠PCE=∠PCF=45°,∵PE⊥CB,PF⊥CD,∴PE=PF,∵∠PFC=∠PEM=∠ECF=90°,PM⊥PD,∴∠EPF=∠MPD=90°,四边形PECF是正方形,∴∠MPE=∠DPF,∴△PEM≌△PFD,∴EM=DF,∴CM+CCE﹣EM+CF+DF=2CF,∵PC=CF,∴CM+CD=PC.(3)连接DG、CH,作QK⊥CD于K.则四边形BCKQ是矩形.∵∠BCD=∠QCG=90°,∴∠BCQ=∠DCG,∵CB=CD,CQ=CG,∴△CBQ≌△CDG,∴∠CBQ=∠CDG=90°,BQ=DG=CK,∵CQ=CG,QH=HG,∴CH=HQ=HG,CH⊥QG,∵∠CHO=∠GOD,∠COH=∠GOD,∴∠HGD=∠HCK,∴△CKH≌△GDH,∴KH=DH,∠CHK=∠GHD,∴∠CHG=∠KHD=90°,∴△DHK是等腰直角三角形,∴DK=AQ=DH,∴.【点睛】本题考查四边形综合题、正方形的性质和判定.等腰直角三角形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.20、(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,1);(3)点P的坐标(,)【解析】

(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵+(n﹣12)2=1,∴m=6,n=12,∴A(6,1),B(1,12),设直线AB解析式为y=kx+b,则有,解得,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=x+2,∴点D坐标(-4,1).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,∵×(-)=-1,∴直线CE⊥CF,∵EC=2,CF=2,∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由解得,∴点P的坐标为().【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.21、(1)△BDE的面积是28;(2);(3)9【解析】

(1)因为DE∥AC,所以△BDE∽△BCA,由相似三角形的性质:面积比等于相似比的平方可得到△BDE的面积;(2)若要求的值,可由相似三角形的性质分别得到AC和DE的数量关系、EF和DE的数量关系即可;(3)由(1)可知△BDE的面积是28,因为BD:BC=2:3,所以BD:CD=2:1,又因为三角形BDE和三角形CDE中BD和CD边上的高相等,所以S=14,进而求出四边形ACDE的面积是35和S=21,利用相似三角【详解】(1)∵DE∥AC,∴△BDE∽△BCA,∴,∵BD:BC=2:3,∴,∵△ABC的面积为63,∴△BDE的面积是28;(2)∵DE∥AC,∴,∴AC=ED,∵FE:ED=2:1,∴EF=2ED,∴;(3)∵△BDE的面积是28,∴S=14,∴四边形ACDE的面积是35,∴S=21,∵DE∥AC,∴△GEF∽△GAC,∴,∴S=×21=9.【点睛】此题考查相似三角形的判定与性质,三角形的面积,解题关键在于得到△BDE∽△BCA22、(1)、、;(2);(3);(4)【解析】

(1)根据多项式乘多项式的乘法计算可得;

(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;

(3)将原式变形为,再利用所得规律计算可得;

(4)将原式变形为,再利用所得规律计算可得.【详解】(1)第1个:;

第2个:;

第3个:;

故答案为:、、;(2)若n为大于1的正整数,则,

故答案为:;

(3),

故答案为:;

(4),

故答案为:.【点睛】本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.23、(1)见解析;(2)见解析【解析】

(1)根据AE2=EB•EC证明△AEB∽△CEA,即可得到∠EBA=∠EAC=90°,从而说明平行四边形ABCD是矩形;(2)根据(1)中△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论