2024届江苏省江阴市江阴初级中学八年级数学第二学期期末综合测试模拟试题含解析_第1页
2024届江苏省江阴市江阴初级中学八年级数学第二学期期末综合测试模拟试题含解析_第2页
2024届江苏省江阴市江阴初级中学八年级数学第二学期期末综合测试模拟试题含解析_第3页
2024届江苏省江阴市江阴初级中学八年级数学第二学期期末综合测试模拟试题含解析_第4页
2024届江苏省江阴市江阴初级中学八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省江阴市江阴初级中学八年级数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.2.如图,□ABCD中,E为BC边上一点,且AE交DC延长线于F,连接BF,下列关于面积的结论中错误的是()A.S△ABF=S△ADE B.S△ABF=S△ADFC.S△ABF=S□ABCD D.S△ADE=S□ABCD3.若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥04.化简的结果是()A.5 B.-5 C.±5 D.255.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C. D.6.如图,D、E分别是AB、AC的中点,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE7.某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是()型号22.52323.52424.5销量(双)5101583A.平均数 B.中位数 C.众数 D.方差8.若反比例函数图象上有两个点,设,则不经过第()象限.A.一 B.二 C.三 D.四9.不列调查方式中,最合适的是()A.调查某品牌电脑的使用寿命,采用普查的方式B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式D.调查苏州地区初中学生的睡眠时间,采用普查的方式10.有一组数据7、11、12、7、7、8、11,下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差为511.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.512.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A. B.1 C. D.6二、填空题(每题4分,共24分)13.在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.14.如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=40°,则∠AOD的度数为_____.15.一个数的平方等于这个数本身,这个数为_________.16.分解因式:2a3﹣8a=________.17.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.18.如图,平分,,,则______.三、解答题(共78分)19.(8分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.20.(8分)如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF为平行四边形.(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.21.(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图;(2)写出被抽查学生的体育锻炼时间的众数和中位数;(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.22.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.(1)求直线AB的函数解析式;(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.23.(10分)计算:÷2+()()-.24.(10分)如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线。(1)求∠DOC的度数;(2)求出射线OC的方向。25.(12分)阅读材料:换元法是数学学习中最常用到的一种思想方法,对结构较复杂的数字和多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化.换元法在较大数的计算,简化多项式的结构等方面都有独到的作用.例:39×4040-40×3939设39=x则40=x+1上式=x=101x=0应用以上材料,解决下列问题:(1)计算:199×200200-200×199199(2)化简:p26.骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.2、B【解析】

根据△ABF与△ABC等底同高,△ADE与△ADC等底同高,结合平行四边形的性质可得S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,问题得解.【详解】解:∵AB∥CD,AD∥BC,∴△ABF与△ABC等底同高,△ADE与△ADC等底同高∴S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,∴S△ABF=S△ADE,∴A,C,D正确;∵S△ADF=S△ADE+S△DEF,S△ABF=S△ADE,∴S△ADF>S△ABF,∴B不正确;故选B.【点睛】本题考查了平行四边形的性质、三角形面积的计算等知识,熟练掌握同底等高的三角形面积相等是解决问题的关键.3、C【解析】试题解析:根据题意得:解得:故选C.4、A【解析】

根据开平方的运算法则计算即可.【详解】解:==5,

故选:A.【点睛】本题考查了开平方运算,关键是掌握基本的运算法则.5、B【解析】

解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.∵∠AOD=60°,∴△OAB是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B.6、B【解析】

首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【详解】∵E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故选B.【点睛】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.7、C【解析】

众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、C【解析】

利用反比例函数的性质判断出m的正负,再根据一次函数的性质即可判断.【详解】解:∵,∴a-1>0,∴图象在三象限,且y随x的增大而减小,∵图象上有两个点(x1,y1),(x2,y2),x1与y1同负,x2与y2同负,∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的图象经过一,二、四象限,不经过三象限,故选:C.【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【解析】

本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A.调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;C.要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;D.调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;故选B【点睛】此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来10、A【解析】

根据中位数.平均数.极差.众数的概念求解.【详解】这组数据按照从小到大的顺序排列为:7.7.7.8.11.11.12,则中位数为8,平均数为,众数为7,极差为,故选A.【点睛】本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.11、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C.12、C【解析】试题解析:∵D、E分别是AB、AC上点,DE//BC,∴∵AD=2,DB=1,AE=3,∴故选C.二、填空题(每题4分,共24分)13、20【解析】

所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.【详解】解:人

故答案为:20【点睛】考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.14、50°【解析】

根据旋转的性质得出全等,根据全等三角形性质求出∠DOC=40°,代入∠AOD=∠AOC﹣∠DOC求出即可.【详解】解:∵△OAB绕点O逆时针旋转90°到△OCD的位置,∠AOB=40°,∴△OAB≌△OCD,∠COA=90°,∴∠DOC=∠AOB=40°,∴∠AOD=∠AOC﹣∠COD=90°﹣40°=50°,故答案为50°15、0或1【解析】

根据特殊数的平方的性质解答.【详解】解:平方等于这个数本身的数只有0,1.故答案为:0或1.【点睛】此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.16、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.17、2【解析】

先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【详解】因为,△ABC中,∠C=90°,∠A=30°,所以,,因为,DE是中位线,所以,.故答案为2【点睛】本题考核知识点:直角三角形,三角形中位线.解题关键点:熟记直角三角形性质,三角形中位线性质.18、50【解析】

由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.【详解】解:∵,∴∠ADE=180°-80°=100°,∵平分,∴∠BDE=∠ADE=50°,∵,∴∠ABD=∠BDE=50°.故答案为:50.【点睛】本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.三、解答题(共78分)19、(1)见详解;(2);.【解析】

(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,则DH=AD−AH=2−,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.【详解】解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA=,∴OB=,∵cos∠ABO=,cos∠ABH=,∴BH=,AH==,∴DH=AD−AH=2−,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴,即∴DP=;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=2,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:.【点睛】本题是四边形综合题,主要考查了正方形的性质、旋转的性质、等腰三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、圆周角定理、勾股定理、三角函数等知识,综合性强,难度大,知识面广.20、(1)详见解析;(2)四边形ADCF为矩形时AB=AC,理由详见解析.【解析】

(1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;(2)利用等腰三角形的性质以及矩形的性质得出即可.【详解】(1)∵AF∥BC,∴∠FAE=∠EDB,∠AFE=∠EBD.又∵AE=ED,∴△AEF≌△DEB(AAS),∴AF=DB,又∵BD=DC,∴AF=DC,∴四边形ADCF为平行四边形;(2)四边形ADCF为矩形时AB=AC;理由:∵四边形ADCF为矩形,∴AD⊥BC,∴∠ADC=90°,∵D为BC的中点,∴AB=AC,∴四边形ADCF为矩形时AB=AC.【点睛】此题主要考查了矩形的性质和全等三角形的判定等知识,利用了全等三角形的判定与性质,平行四边形的判定,矩形的性质是解题关键.21、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名【解析】

(1)本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数=抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;(3)该校学生一周体育锻炼时间不低于9小时的估计人数

=该校学生总数×一周体育锻炼时间不低于9小时的频率.【详解】(1)解:本次抽查的学生共有8÷20%=40(名)一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)条形图补充如下:(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5(3)解:1800×=900(名)答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.22、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).【解析】

(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,【详解】(1)设直线AB的函数解析式为y=kx+b,则解方程组得直线AB的函数解析式为y=-x+6,(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则,解方程组得所以直线AB′的解析式为,当x=0时,y=,所以M点的坐标为(0,),(3)有符合条件的点M,理由如下:如图:因为△ABM是以AB为直角边的直角三角形,当∠MAB=90°时,直线MA垂直直线AB,∵直线AB的解析式为y=-x+6,∴设MA的解析式为y=x+b,∵点A(4,2),∴2=4+b,∴b=-2,当∠ABM′=90°时,BM′垂直AB,设BM′的解析式为y=x+n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论