![重庆市巴川中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view3/M02/1A/3A/wKhkFmYWtN6AOlHEAAIrjZJm9Dc674.jpg)
![重庆市巴川中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view3/M02/1A/3A/wKhkFmYWtN6AOlHEAAIrjZJm9Dc6742.jpg)
![重庆市巴川中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view3/M02/1A/3A/wKhkFmYWtN6AOlHEAAIrjZJm9Dc6743.jpg)
![重庆市巴川中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view3/M02/1A/3A/wKhkFmYWtN6AOlHEAAIrjZJm9Dc6744.jpg)
![重庆市巴川中学2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view3/M02/1A/3A/wKhkFmYWtN6AOlHEAAIrjZJm9Dc6745.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市巴川中学2024年八年级下册数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列数学符号中,属于中心对称图形的是()A. B. C. D.2.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为()A.10x-5(20-x)≥90 B.10x-5(20-x)>90C.20×10-5x>90 D.20×10-5x≥903.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为()A.13=3+10 B.25=9+16 C.49=18+31 D.64=28+364.下列点在直线y=-x+1上的是()A.(2,-1) B.(3,3) C.(4,1) D.(1,2)5.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形 B.菱形 C.矩形 D.正方形6.下列根式中不是最简二次根式的是()A. B. C. D.7.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE,设,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()(提示:过点E、C、D作AB的垂线)A.线段PD B.线段PC C.线段DE D.线段PE8.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54° B.60° C.66° D.72°9.已知四边形是平行四边形,下列结论中不正确的是()A.当时,它是菱形 B.当时,它是菱形C.当时,它是矩形 D.当时,它是正方形10.下列图标中,是中心对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在中,,分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______12.如图,的顶点在矩形的边上,点与点、不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_____.13.已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是.14.函数的自变量的最大值是______.15.直线过第_________象限,且随的增大而_________.16.李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.17.如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.18.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为_____________三、解答题(共66分)19.(10分)如图(甲),在正方形中,是上一点,是延长线上一点,且.(1)求证:;(2)在如图(甲)中,若在上,且,则成立吗?证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图(乙)四边形中,∥(>),,,点是上一点,且,,求的长.20.(6分)如图,正方形ABCD中,点E是边BC上一点,EF⊥AC于点F,点P是AE的中点.(1)求证:BP⊥FP;(2)连接DF,求证:AE=DF.21.(6分)如图,一次函数y=kx+b的图像与反比例函数y=mx的图像交于点A(-3,n),(1)求反比例函数与一次函数的函数表达式(2)请结合图像直接写出不等式kx+b⩾mx(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,22.(8分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.(1)求证:;(2)求证,四边形BCFD是平行四边形;(3)若,,求四边形ADCF的面积.23.(8分)深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?24.(8分)某中学开学初到商场购买、两种品牌的足球,购买种品牌的足球50个,种品牌的足球25个,共花费4500元,已知购买一个种品牌的足球比购买一个种品牌的足球少30元.(1)求购买一个种品牌、一个种品牌的足球各需多少钱.(2)学校为了响应“足球进校园”的号召,决定再次购进、两种品牌足球共50个,正好赶上商场对商品价格进行调整,品牌的足球售价上涨4元,品牌足球按原售价的9折出售,如果学校第二次购买足球的总费用不超过第一次花费的,且保证品牌足球不少于23个,则学校有几种购买方案?(3)求出学校在第二次购买活动中最多需要多少钱?25.(10分)如图,直线是一次函数的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与轴的交点坐标26.(10分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,且AF=DF.(1)求证:△AFE≌ODFB;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足什么条件时,四边形ADCE是矩形.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【解析】
据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.【详解】解:根据题意,得
10x-5(20-x)>1.
故选:B.【点睛】本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.3、D【解析】
三角形数=1+2+3+……+n,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.【详解】A.中3和10是三角形数,但是不相邻;B.中16、9均是正方形数,不是三角形数;C.中18不是三角形数;D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D正确;故选D.【点睛】此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.4、A【解析】分析:分别把点代入直线y=-x+1,看是否满足即可.详解:当x=1时,y=-x+1=0;当x=2时,y=-x+1=-1;当x=3时,y=-x+1=-2;当x=4时,y=-x+1=-3;所以点(2,-1)在直线y=-x+1上.故选A.点睛:本题主要考查了一次函数上的坐标特征,关键在于理解一次函数上的坐标特征.5、B【解析】
此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【详解】由题意可得:四边形的四边形相等,故展开图一定是菱形.故选B.【点睛】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.6、C【解析】
最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C7、D【解析】
先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的取值,再结合函数图像得到结论.【详解】设等边三角形的边长为1,则0≤x≤1,如图1,分别过点E,C,D作垂线,垂足分别为F,G,H,∵点E、D分别是AC,BC边的中点,根据等边三角形的性质可得,当x=时,线段PE有最小值;当x=时,线段PC有最小值;当x=时,线段PD有最小值;又DE是△ABC的中位线为定值,由图2可知,当x=时,函数有最小值,故这条线段为PE,故选D.【点睛】此题主要考查函数图像,解题的关键是熟知等边三角形、三角形中位线的性质.8、D【解析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.9、D【解析】
根据特殊平行四边形的判定方法判断即可.【详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.10、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、2或2;【解析】
根据等面积法,首先计算AC边上的高,再设AD的长度,列方程可得x的值,进而计算AB.【详解】根据可得为等腰三角形分别是的中点,且四边形是菱形所以可得中AC边上的高为:设AD为x,则CD=所以解得x=或x=故答案为2或2【点睛】本题只要考查菱形的性质,关键在于设合理的未知数求解方程.12、1【解析】
由平行四边形的性质可得S△ADE=S△ADF=1,由矩形的性质可得阴影部分两个三角形的面积和=S△ADF=1.【详解】解:∵四边形AFDE是平行四边形∴S△ADE=S△ADF=1,四边形是矩形,阴影部分两个三角形的面积和,故答案为1.【点睛】本题考查了矩形的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.13、【解析】
解:如图,取AB的中点D,连接OD、CD,∵正三角形ABC的边长为a,,在△ODC中,OD+CD>OC,∴当O、D、C三点共线时OC最长,最大值为.14、1【解析】
根据二次根式的性质,被开方数大于等于0可知:1-x≥0,解得x的范围即可得出x的最大值.【详解】根据题意得:1-x≥0,解得:x≤1,∴自变量x的最大值是1,故答案为1.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数为非负数.15、【解析】
根据一次函数的性质解答即可.【详解】解:∵-2<0,1>0,∴直线过第一、二、四象限,且随的增大而减小,故答案为:一、二、四;减小.【点睛】本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.16、7.9【解析】分析:根据平均数的定义进行求解即可得.详解:由题意得:故答案为点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.17、1【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【详解】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.【点睛】本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.18、3【解析】∵AB=AC,AD平分∠BAC,∴D是BC中点.∵E是AB的中点,∴DE是△ABC的中位线,.三、解答题(共66分)19、(1)见解析;(1)成立,理由见解析;(3)5【解析】分析:(1)因为ABCD为正方形,所以CB=CD,∠B=∠CDA=90°,又因为DF=BE,则△BCE≌△DCF,即可求证CE=CF;(1)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,则△ECG≌△FCG,故GE=BE+GD成立;(3)①过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.详解:(1)在正方形ABCD中CB=CD,∠B=∠CDA=90°,∴∠CDF=∠B=90°.在△BCE和△DCF中,∴△BCE≌△DCF(SAS).∴CE=CF.(1)GE=BE+GD成立.理由如下:∵∠BCD=90°,∠GCE=45°,∴∠BCE+∠GCD=45°.∵△BCE≌△DCF(已证),∴∠BCE=∠DCF.∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=45°.∴∠ECG=∠FCG=45°.在△ECG和△FCG中,,∴△ECG≌△FCG(SAS).∴GE=FG.∵FG=GD+DF,∴GE=BE+GD.(3)①如图1,过点C作CG⊥AD,交AD的延长线于点G,由(1)和题设知:DE=DG+BE,设DG=x,则AD=6-x,DE=x+3,在Rt△ADE中,由勾股定理得:AD1+AE1=DE1,∴(6-x)1+31=(x+3)1,解得x=1.∴DE=1+3=5.点睛:此题是一道把等腰三角形的判定、勾股定理、正方形的判定和全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.20、(1)证明见解析;(2)证明见解析.【解析】
(1)先根据正方形的性质可得,再根据直角三角形的性质可得,然后根据等腰三角形的性质可得,,最后根据三角形外角性质、角的和差即可得证;(2)如图(见解析),先结合(1)的结论、根据等腰直角三角形的性质可得,从而可得,再根据三角形全等的判定定理与性质可得,然后根据等量代换即可得证.【详解】(1)四边形ABCD是正方形点P是AE的中点,是斜边上的中线,FP是斜边上的中线即;(2)如图,连接BF是等腰直角三角形四边形ABCD是正方形在和中,.【点睛】本题考查了正方形的性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.21、(1)y=6x;y=x+1;(2)-3≤x<0或x≥2;(3)点P的坐标为(3,0)或(-5,【解析】
(1)根据反比例函数y=mx的图象经过B(2,3),利用待定系数法即可求出反比例函数的解析式;进而求得A的坐标,根据A、(2)根据A、B的坐标,结合图象即可求得;(3)根据三角形面积求出DP的长,根据D的坐标即可得出P的坐标.【详解】解:(1)∵反比例函数y=mx的图象经过∴m=2×3=6.∴反比例函数的解析式为y=6∵A(-3,n)在y=6x上,所以∴A的坐标是(-3,-2).把A(-3,-2)、B(2,3)代入y=kx+b.得:-3k+b=-22k+b=3解得k=1b=1∴一次函数的解析式为y=x+1.(2)由图象可知:不等式kx+b⩾mx的解集是-3⩽x<0或(3)设直线与x轴的交点为D,∵把y=0代入y=x+1得:0=x+1,x=-1,∴D的坐标是(-1,0),∵P为x轴上一点,且ΔABP的面积为10,A(-3,-2),B(2,3),∴1∴DP=4,∴当P在负半轴上时,P的坐标是(-5,0);当P在正半轴上时,P的坐标是(3,0),即P的坐标是(-5,0)或(3,0).【点睛】本题考查了用待定系数法求一次函数的解析式,一次和图象上点的坐标特征,三角形的面积的应用,主要考查学生的计算能力.22、(1),见解析;(2)四边形BCFD是平行四边形,见解析;(3).【解析】
(1)欲证明DE=EF,只要证明△AEF≌△CED即可;
(2)只要证明BC=DF,BC∥DF即可;
(3)只要证明AC⊥DF,求出DF、AC即可;【详解】(1)证明:∵,∴,∵,,∴,∴.(2)∵,,∴,,∵,∴,∴四边形BCFD是平行四边形.(3)在中,,,∴,,,∴,∵DE∥BC,∴,∴,∴.【点睛】本题考查平行四边形的判定和性质、三角形的中位线定理.解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)甲工程队单独完成需要12天;(2)A种清洁剂最少应购买1瓶【解析】
(1)可设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,根据工作总量的等量关系,列出方程即可求解;(2)可设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,根据购买总费用不多于780元,列出不等式即可求解.【详解】解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,依题意有,解得x=12,经检验,x=12是原方程的解.故甲工程队单独完成此工程需要12天;(2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,依题意有6a+9(100-a)≤780,解得a≥1.故A种清洁剂最少应购买1瓶.【点睛】考查了分式方程的应用,一元一次不等式的应用,分析题意,找到关键描述语,找到合适的等量关系和不等关系是解决问题的关键.24、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,详见解析;(3)最多需要3150元.【解析】
(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及购买一个种品牌的足球比购买一个种品牌的足球少30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B两种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.【详解】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:,答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:,解得:25≤m≤1.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球1个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度屋顶光伏系统维护保养合同模板
- 学校安全管理方案
- 2024-2025学年广西壮族自治区高三上学期11月联考历史试卷
- 2025年公共照明设施合同
- 2025年自动化设备购买与前期策划协议
- 2025年住宅用地和楼宇订购合同
- 2025年绿化养护承包合同范本
- 2025年外教聘请合作协议
- 2025年二手房产交易代理协议格式
- 2025年交通运输中介合同协议书范本
- 医学史完整教学课件
- 双眼视异常处理方法-双眼视异常的棱镜处方(双眼视检查)
- NB-T32004-2018光伏并网逆变器技术规范
- 我国水体中抗生素的污染现状、危害及防治建议
- 手术出血量的评估
- 报价单(产品报价单)
- 2020年8月自考00808商法试题及答案含解析
- 0-9任意四位数数位排列
- 隧道安全培训课件
- 中医护理的基本特点与护理原则-
- 小学劳动教育教研计划
评论
0/150
提交评论