江苏省泰兴市实验初级中学2024年八年级数学第二学期期末学业质量监测试题含解析_第1页
江苏省泰兴市实验初级中学2024年八年级数学第二学期期末学业质量监测试题含解析_第2页
江苏省泰兴市实验初级中学2024年八年级数学第二学期期末学业质量监测试题含解析_第3页
江苏省泰兴市实验初级中学2024年八年级数学第二学期期末学业质量监测试题含解析_第4页
江苏省泰兴市实验初级中学2024年八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰兴市实验初级中学2024年八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列函数中,y随x增大而减小的是()A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=2.下列命题中,有几个真命题()①同位角相等②直角三角形的两个锐角互余③平行四边形的对角线互相平分且相等④对顶角相等A.1个 B.2个 C.3个 D.4个3.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A.a不平行b B.b不平行c C.a⊥c D.a不平行c4.下列代数式中,属于最简二次根式的是(

)A.7 B.23 C.12 D.0.55.在学校举行的“阳光少年,励志青年”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<7.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.88.一次函数y2x2的大致图象是()A. B. C. D.9.使二次根式x-1的有意义的x的取值范围是()A.x>0 B.x>1 C.x≥1 D.x≠110.在平面直角坐标系中,点P(2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时的众数是_____.12.如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.13.若分式的值为零,则x的值为_____.14.平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是_____.15.函数y=2x和y=ax+4的图象相交于点A(m,3),则根据图象可得关于x,y的方程组的解是_____________.16.计算:12-17.如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.18.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.三、解答题(共66分)19.(10分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.20.(6分)已知m和n是两个两位数,把m和n中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以11的商记为W(m,n).例如:当m=36,n=10时,将m十位上的3放置于n的1、0之间,将m个位上的6放置于n中0的右边,得到1306;将n十位上的1放置于m的3、6之间,将n个位上的0放置于m中6的右边,得到1.这两个新四位数的和为1306+1=4466,4466÷11=2,所以W(36,10)=2.(1)计算:W(20,18);(2)若a=10+x,b=10y+8(0≤x9,1≤y≤9,x,y都是自然数).①用含x的式子表示W(a,36);用含y的式子表示W(b,49);②当150W(a,36)+W(b,49)=62767时,求W(5a,b)的最大值.21.(6分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86909692乙92889593(1)若公司想招一个综合能力较强的职员,计算两名候选人的平均成绩,应该录取谁?(2)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照1:3:4:2的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?22.(8分)如图,在平面直角坐标系中,的顶点坐标分别,,,以坐标原点为位似中心,在第三象限画出与位似的三角形,使相似比为,并写出所画三角形的顶点坐标.23.(8分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(8分)如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.25.(10分)已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=1.(1)写出y与x之间的函数关系式;(2)求当x=﹣3时,y的值;26.(10分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F(1)求证:AE=DF,(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

∵函数(y=kx+b)中y随x增大而减小,∴k<0,∵只有B选项k=-2<0,其它选项都大于0,∴B选项是正确.故选B.2、B【解析】

解:①只有在两直线平行的前提下,同位角才相等,错误;②直角三角形的两个锐角互余,正确;③平行四边形的对角线互相平分,不一定相等,错误;④对顶角相等,正确故选B3、D【解析】

用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.【详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,因此用反证法证明“a∥c”时,应先假设a与c不平行,故选D.【点睛】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4、A【解析】

最简二次根式满足下列两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,再对各选项逐一判断即可.【详解】解:A、7是最简二次根式,故A符合题意;B、23=63,故C、12=23,故12不是最简二次根式,故D、0.5=22,故0.5故答案为:A【点睛】本题考查二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.5、B【解析】解:数据1出现了两次,次数最多,所以这组数据的众数是1.故选B.6、B【解析】

二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7、C【解析】

∵EO是AC的垂直平分线,∴AE=CE.设CE=x,则ED=AD﹣AE=4﹣x.,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,CE的长为2.5故选C8、A【解析】

先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【详解】解:∵k=2,b=-2,∴函数y=2x-2的图象经过第一、三、四象限.故选:A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9、C【解析】试题分析:要使x-1有意义,必须x-1≥0,解得:x≥1.故选C.考点:二次根式有意义的条件.10、D【解析】

首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.【详解】点P(2,3)关于x轴的对称点为(2,−3),(2,−3)在第四象限.故选:D.【点睛】此题考查关于x轴、y轴对称的点的坐标,解题关键在于掌握对称的性质.二、填空题(每小题3分,共24分)11、1.【解析】

众数是一组数据中出现次数最多的数据,根据众数的定义就可以求出.【详解】在这一组数据中1出现了8次,出现次数最多,因此这组数据的众数为1.故答案为1.【点睛】本题属于基础题,考查了确定一组数据的众数的能力.要明确定义.12、.【解析】

设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.【详解】解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,如图:∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE,同理可得∠AOD=∠OBE,在△AOD和△OBE中,,∴△AOD△OBE(ASA),∵点B在第四象限,∴,即,解得,∴反比例函数的解析式为:.故答案为.【点睛】本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.13、1【解析】

由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【点睛】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.14、14或1【解析】由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=2时,求出AB的长;(2)当AE=3时,求出AB的长,进一步求出平行四边形的周长.

解:∵四边形ABCD是平行四边形,

∴AD=BC,AB=CD,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠ABE=∠AEB,

∴AB=AE,

∵∠ABC的平分线将AD边分成的两部分的长分别为2和3两部分,当AE=2时,则平行四边形ABCD的周长是14;

(2)当AE=3时,则平行四边形ABCD的周长是1;

故答案为14或1.

“点睛”此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现,解题时还要注意分类讨论思想的应用.

15、【解析】试题解析:∵A点在直线y=2x上,∴3=2m,解得∴A点坐标为∵y=2x,y=ax+4,∴方程组的解即为两函数图象的交点坐标,∴方程组的解为故答案为16、3【解析】1217、1【解析】

由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.【详解】解:∵由作图可知,MN为AB的垂直平分线,∴AE=BE,=6,∴.而是的中位线,∴.故答案为:1.【点睛】本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.18、【解析】

延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【详解】延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.三、解答题(共66分)19、(4)x4=,x2=;(2)x4=-3,x2=2.【解析】试题分析:(4)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,∴△=b2-4ac=(-3)2-4×4×4=3.∴x=.即x4=,x2=;(2)∵因式分解得(x+3)(x-2)=4,∴x+3=4或x-2=4,解得x4=-3,x2=2.考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.20、(1)308;(2)①W(a,36)=[1+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②W(5a,b)最大值为3.【解析】

(1)根据题目中新定义的运算计算即可;(2)①根据题目中新定义的运算表示出来即可;②根据①中表示出来的,并且已知x和y的取值范围求解即可.【详解】解:(1)W(20,18)=(1280+2108)÷11=3388÷11=308;(2)①W(a,36)=[1+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②∵当150W(a,36)+W(b,49)=62767∴150([1+x+1306+10x)÷11]+(489+1000y+4098+100y)÷11=627673x+2y=29,∴x=5,y=7,x=7,y=4,x=9,y=1,∴a=15,b=78,a=17,b=48,a=19,b=18,∴W(75,78)=3,W(85,48)=1213,W(95,18)=1013,∴W(5a,b)最大值为3.【点睛】二元一次方程的整数解及实数的混合运算是本题的考点,理解题目中新定义的运算是解题的关键.21、(1)应该录取乙;(2)应该录取甲【解析】

(1)根据平均数的公式算出即可.(2)根据加权平均数的公式算出即可.【详解】(1),,故应该录取乙.(2),,从应该录取甲.【点睛】本题考查平均数和加权平均数的计算,关键在于牢记基础公式.22、见解析,,,.【解析】

直接利用位似图形的性质得出对应点位置进而得出答案.【详解】解:如图所示:,则,,.【点睛】此题主要考查了位似变换,以及坐标与图形的性质,关键是掌握若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).23、(1)证明见解析;(2)证明见解析.【解析】

(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【详解】(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC,∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.24、(1)1;(2)C的坐标为(3,0);(3)(﹣2,0).【解析】试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为ACD是直角三角形,假设ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.试题解析:解:(1)∵点A(1,1)在反比例函数y=(x>0)的图象上,∴m=1×1=1,故答案为1.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+2.当y=0时,有﹣2x+2=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,1),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即12+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论