版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省沈阳沈河区七校联考八年级数学第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+32.某边形的每个外角都等于与它相邻内角的,则的值为()A.7 B.8 C.10 D.93.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A. B.C. D.4.下列表格是二次函数的自变量x与函数值y的对应值,判断方程(为常数)的一个解x的范围是x…6.176.186.196.20……-0.03-0.010.020.04…A. B.C. D.5.反比例函数y=-6xA.第一、二象限 B.第三、四象限C.第一、三象限 D.第二、四象限6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.直角三角形 C.等边三角形 D.平行四边形7.某班名学生的身高情况如下表:身高人数则这名学生身高的众数和中位数分别是()A. B. C. D.8.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,3) B.(1,) C.(1,) D.(,)9.某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数10203040关于这组数据,下列说法正确的是()A.众数是2册 B.中位数是2册C.平均数是3册 D.方差是1.510.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户居民的日用电量,结果如下表:日用电量(单位:度)45678户数25431则关于这15户家庭的日用电量,下列说法错误的是()A.众数是5度 B.平均数6度C.极差(最大值-最小值)是4度 D.中位数是6度11.一次函数的图象经过点,且的值随的增大而增大,则点的坐标可以为()A. B. C. D.12.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为()A.92 B.88 C.90 D.95二、填空题(每题4分,共24分)13.如图,菱形ABCD对角线AC=6cm,BD=8cm,AH⊥BC于点H,则AH的长为_______.14.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.15.命题“若,则.”的逆命题是_____命题.(填“真”或“假”)16.已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____17.在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.18.已知,当=-1时,函数值为_____;三、解答题(共78分)19.(8分)如果一组数据1,2,2,4,的平均数为1.(1)求的值;(2)求这组数据的众数.20.(8分)已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A.C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F,当点E落在线段CD上时(如图),(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;21.(8分)两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.(2)若两车行驶5相遇,求乙车的速度.22.(10分)已知:,与成正比例,与成反比例,且时,;时.(1)求关于的函数关系式.(2)求时,的值.23.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,易得∠ABE=∠ADG=90°,可证ΔABE≅ΔADG.再证明ΔAFG≅ΔAFE,得EF=FG=DG+FD=BE+DF.问题(1):如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD问题(2):如图3,在四边形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=AD=1,点E,F分别在四边形ABCD的边BC,CD上的点,且∠EAF=60°,求此时ΔCEF的周长24.(10分)如图1,已知直线与坐标轴交于两点,与直线交于点,且点的横坐标是纵坐标的倍.(1)求的值.(2)为线段上一点,轴于点,交于点,若,求点坐标.(3)如图2,为点右侧轴上的一动点,以为直角顶点,为腰在第一象限内作等腰直角,连接并延长交轴于点,当点运动时,点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.25.(12分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,AD=12,DC=1.(1)证明:△ADF≌△AB′E;(2)求线段AF的长度.(3)求△AEF的面积.26.在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB为边在第一象限内作正方形ABCD.(1)若m=4,n=3,直接写出点C与点D的坐标;(2)点C在直线y=kx(k>1且k为常数)上运动.①如图1,若k=2,求直线OD的解析式;②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组b=3k+b=2解得b=3k=-1则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.2、C【解析】
设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】设内角为x,则相邻的外角为x,由题意得,x+x=180°,解得,x=144°,360°÷36°=10故选:C.【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.3、B【解析】
根据利润=售价-进价,列出出不等式,求解即可.【详解】设成本为a元,由题意可得:则去括号得:整理得:故.故选B.【点睛】考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.4、C【解析】利用二次函数和一元二次方程的性质.由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围.故选C.5、D【解析】
根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.【详解】∵y=-6x∴函数图象过二、四象限.故选D.【点睛】本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.6、A【解析】
根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点.【详解】A.既是轴对称图形,又是中心对称图形,符合题意;B.既不是轴对称图形,也不是中心对称图形,不符合题意;C.是轴对称图形,不是中心对称图形,不符合题意;D.不是轴对称图形是中心对称图形,不符合题意;故选A.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的定义是解答本题的关键.7、D【解析】
根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【详解】解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.故选:D.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.8、A【解析】
过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选A.【点睛】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.9、B【解析】
根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【详解】解:A、众数是3册,结论错误,故A不符合题意;
B、中位数是2册,结论正确,故B符合题意;
C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;
D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.
故选:B.【点睛】本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.10、B【解析】
根据众数的定义,在一组数据中出现次数最多就是众数,以及根据加权平均数的求法,可以得出平均数,极差是最大值与最小值的差,中位数是按大小排列后最中间一个或两个的平均数,求出即可.【详解】解:∵由图表得:15户家庭日用电量分别为:4,4,5,5,5,5,5,6,6,6,6,7,7,7,8
∴此组数据的众数是:5度,故本选项A正确;
此组数据的平均数是:(4×2+5×5+6×4+7×3+8)÷15≈5.73度,故本选项B错误;
极差是:8-4=4度,故本选项C正确;
中位数是:6度,故本选项D正确.
故选:B.【点睛】本题主要考查了众数,中位数,极差以及加权平均数的求法,正确的区分它们的定义是解决问题的关键.11、C【解析】
根据函数图象的性质判断y的值随x的增大而增大时,k>0,由此得到结论.【详解】∵一次函数y=kx-1的图象的y的值随x值的增大而增大,∴k>0,A、把点(-5,3)代入y=kx-1得到:k=-<0,不符合题意;B、把点(5,-1)代入y=kx-1得到:k=0,不符合题意;C、把点(2,1)代入y=kx-1得到:k=1>0,符合题意;D、把点(1,-3)代入y=kx-1得到:k=-2<0,不符合题意;故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.12、C【解析】分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40%+10%=1.详解:由题意得,85×50%+95×40%+95×10%=90(分).点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.二、填空题(每题4分,共24分)13、cm【解析】
根据菱形的性质求出BC=5,然后根据菱形ABCD面积等于BC∙AH进一步求解即可.【详解】∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AH,∴BC×AH=24,∴AH=cm.故答案为:cm.【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.14、1【解析】
估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、假【解析】
写出该命题的逆命题后判断正误即可.【详解】解:命题“若,则.”的逆命题是若a>b,则,例如:当a=3,b=-2时错误,为假命题,
故答案为:假.【点睛】本题考查了命题与定理的知识,解题的关键是交换命题的题设写出该命题的逆命题.16、(-0.4,0)【解析】
点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标.【详解】解:点A(-2,2)关于x轴对称的点A'(-2,-2),
设直线A'B的解析式为y=kx+b,
把A'(-2,-2),B(2,3)代入,可得
,解得,
∴直线A'B的解析式为y=x+,
令y=0,则0=x+,
解得x=-0.4,
∴点P的坐标为(-0.4,0),
故答案为:(-0.4,0).【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.17、丙【解析】
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为=0.56,=0.60,=0.45,=0.50,所以<<<,由此可得成绩最稳定的为丙.故答案为:丙.【点睛】此题考查方差,解题关键在于掌握其定义.18、-1【解析】
将x=-1,代入y=2x+1中进行计算即可;【详解】将x=-1代入y=2x+1,得y=-1;【点睛】此题考查求函数值,解题的关键是将x的值代入进行计算;三、解答题(共78分)19、(1);(2)2和4.【解析】
(1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;(2)根据众数的定义即可求出答案.【详解】解:(1)由平均数为1,得,解得:.(2)当时,这组数据是2,2,1,4,4,其中有两个2,也有两个4,是出现次数最多的,∴这组数据的众数是2和4.【点睛】本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.20、(1)见解析;(2)【解析】
(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.【详解】(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB即∠BPE=90°,∴∠BPG=90°−∠GPE=∠EPH.在△PGB和△PHE中,.∴△PGB≌△PHE(ASA),∴PB=PE.②连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°.∵PE⊥PB即∠BPE=90°,∴∠PBO=90∘−∠BPO=∠EPF.∵EF⊥PC即∠PFE=90°,∴∠BOP=∠PFE.在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90∘,∴BC=OB.∵BC=1,∴OB=,∴PF=.∴点PP在运动过程中,PF的长度不变,值为.【点睛】此题考查正方形的性质,全等三角形的判定与性质,四边形综合题,解题关键在于作辅助线21、(1);(2)40千米/小时.【解析】
(1)甲车行驶过程中y与x之间的函数解析式两种,即从A地到B地是正比例函数,返回时是一次函数,自变量的取值范围分别为(0<x≤4)和(4<x≤7),
(2)求出乙车的y与x的关系式,再与甲车返回时的关系式组成方程组解出即可.【详解】解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:
300=4k,解得:k=75,
∴y=75x
(0<x≤4)
设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:
,解得:k=-100,b=700,
∴y=-100x+700
(4<x≤7),
答:甲车行驶过程中y与x之间的函数解析式为:,
(2)设乙车速度为m千米/小时,依据两车行驶5相遇,在甲车返回时相遇,即甲乙两车离A的距离相等,得:5m=-100×5+700
解得:m=40
答:乙车的速度为40千米/小时.【点睛】考查一次函数的性质、待定系数法求函数的关系式、一次函数与一次方程的关系等知识,理解变量之间的关系是前提,正确识别图象是关键.22、(1),(2).【解析】
(1)先由y与成正比例函数关系,y与x成反比例函数关系可设,,进而得到;再将x=1,y=3和x=-1,y=1分別代入得到再求解即可(2)将代入函数表达式计算,即可求出y的值【详解】(1)设,,,,把,代入得:①,把代入得:②,①,②联立,解得:,,即关于的函数关系式为,(2)把代入,解得.【点睛】此题考查待定系数法求正比例函数解析式,待定系数法求一次函数解析式,待定系数法求反比例函数解析式,解题关键在于设,23、(1)EF=BE+FD,见解析;(2)ΔCEF周长为23【解析】
(1)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
(2)连接AC,证明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可计算△CEF的周长.【详解】证明:(1)在CD的延长线上截取DG=BE,连接AG,如图2,
∵∠ADF=90°,∠ADF+∠ADG=180°,
∴∠ADG=90°,
∵∠B=90°,
∴∠B=∠ADG=90°,
∵BE=DG,AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
∵∠EAF=12∠BAD,
∵∠EAG=12∠EAG=12(∠EAF+∠FAG),
∴∠EAF=∠FAG,
又∵AF=AF,AE=AG,
∴△AEF≌△AFG(SAS),
∴EF=FG=DF+DG=EB+DF;
(2)解:连接AC,如图3,
∵AB=AD,BC=CD,AC=AC,
∴△ABC≌△ADC(SSS).
∴∠DAC=∠BAC,
∴∠BAC=12∠BAD=60°,
∵∠B=90°,AB=1,
∴在Rt△ABC中,AC=2,BC=AC2-AB2=22-1【点睛】本题是四边形的综合题,考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形,难度适中.24、(1);(2);(3)不变,G(0,-4).【解析】
(1)根据P点的横坐标是纵坐标的3倍,可得k的值;(2)由图象可知,D、E、F三点在同一条直线上,横坐标相同,可设D、E点横坐标,分别代入解析式可以表示出纵坐标,进而表示出DE、EF的长度,从而构造出方程,求出点D坐标.(3)过作轴于,根据题目条件,先证明,进而能够得到AH=NH,得到为等腰直角三角形,然后得到也是等腰三角形,进而得到G点的坐标.【详解】解:(1)直线上点P的横坐标是纵坐标的3倍,若P点纵坐标为a则横坐标为3a,,;(2)设D点横坐标为m,则D点坐标为,DF=轴于F交于E,E点坐标为EF=,,,,解得:(3)点的位置不发生变化,.过作轴于,是等腰直角三角形,,,,,,,即,又,,是等腰直角三角形,,,为等腰直角三角形,,∴G(0,-4).【点睛】本题运用了数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产文件档案管理制度
- 2024年度瓷砖地板销售与铺设一体服务合同3篇
- 2024年度切削液定制服务合同2篇
- 2024年度互联网服务合同服务内容更新与用户隐私保护
- 2024年度技术转让合同详解
- 2024年度设备采购及安装合同服务具体条款与条件
- 2024年度智控系统研发合作合同
- 2024年度租赁购买合同标的及租赁购买物品详细说明
- 《柴芩温胆汤加味治疗脾胃湿热型小儿厌食症的临床疗效观察》
- 《传染性胸膜肺炎放线杆菌ApxⅣ与多杀性巴氏杆菌OmpH二联基因疫苗的研究》
- 《Python从入门到数据分析应用》 思政课件 第1章 初识Python
- 动画场景设计1课件
- 使役态+被动态课件 【知识精讲精研】 高三日语一轮复习
- 当前中小学教师培训的理论、政策及标准解读
- 幼儿园教学课件语言教育《雪地里的小画家》
- ESG引领下的西部城市再出发-新型城市竞争力策略研究白皮书
- 档案袋密封条
- 初中美术-美术是个大家族教学设计学情分析教材分析课后反思
- 小学生班干部竞选自我介绍PPT模板公开课一等奖市赛课获奖课件
- 检验科生化项目临床意义ppt课件-生化室项目临床意义ppt
- 百分数的认识 教学设计
评论
0/150
提交评论