广东省深圳市龙岗区石芽岭学校2024年数学八年级下册期末学业质量监测模拟试题含解析_第1页
广东省深圳市龙岗区石芽岭学校2024年数学八年级下册期末学业质量监测模拟试题含解析_第2页
广东省深圳市龙岗区石芽岭学校2024年数学八年级下册期末学业质量监测模拟试题含解析_第3页
广东省深圳市龙岗区石芽岭学校2024年数学八年级下册期末学业质量监测模拟试题含解析_第4页
广东省深圳市龙岗区石芽岭学校2024年数学八年级下册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市龙岗区石芽岭学校2024年数学八年级下册期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在圆的周长公式中,常量是()A.2 B. C. D.2.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.3.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6 D.124.如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于(

)A.110° B.115° C.120° D.125°5.下列计算正确的是A. B. C. D.6.下列点在直线y=-x+1上的是()A.(2,-1) B.(3,3) C.(4,1) D.(1,2)7.下列条件中,不能判定四边形是平行四边形的是()A., B.,C., D.,8.如图,,,则()A.垂直平分 B.垂直平分C.平分 D.以上结论均不对9.将一次函数y=4x的图象向上平移3个单位长度,得到图象对应的函数解析式为()A.y=4x-3 B.y=2x-6 C.y=4x+3 D.y=-x-310.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0二、填空题(每小题3分,共24分)11.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.12.如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.13.如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.14.已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)15.有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)16.如图,是某地区5月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.17.一组数据:3,5,9,12,6的极差是_________.18.如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.三、解答题(共66分)19.(10分)(1)分解因式:﹣m+2m2﹣m3(2)化简:(+)÷(﹣).20.(6分)函数y=(m-2)x+m2-4(m为常数).(1)当m取何值时,y是x的正比例函数?(2)当m取何值时,y是x的一次函数?21.(6分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.22.(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?23.(8分)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i1.24.(8分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.25.(10分)计算:(1—)×+26.(10分)已知四边形中,,垂足为点,.(1)如图1,求证:;(2)如图2,点为上一点,连接,,求证:;(3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【详解】周长公式中,常量为,故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2、B【解析】【分析】根据领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点,即可判断.【详解】领先的兔子看着缓慢爬行的乌龟,兔子骄傲起来,睡了一觉,在图形上来看在一段时间内兔子所行路程不变,当它醒来时,发现乌龟快到了终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点,说明乌龟到达终点时兔子还没到达,所以排除A、C、D,所以符合题意的是B,故选B.【点睛】本题考查了函数的图象,解答本题的关键是读懂题意及图象,弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.3、C【解析】

首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.【详解】310°×2÷180°+2=720°÷180°+2=4+2=1∴该正多边形的边数是1.故选C.【点睛】此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180(n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.4、A【解析】

由矩形的对角线互相平分得,OA=OB,再由三角形的外角性质得到∠AOD等于∠BAO和∠ABO之和即可求解.【详解】解:∵四边形ABCD是矩形,∴AC=BD,OA=OB,∴∠BAO=∠ABO=55°,∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故答案为:A【点睛】本题考查了矩形的性质及外角的性质,熟练利用外角的性质求角度是解题的关键.5、B【解析】

根据二次根式的运算法则,逐一计算即可得解.【详解】A选项,,错误;B选项,,正确;C选项,,错误;D选项,,错误;故答案为B.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.6、A【解析】分析:分别把点代入直线y=-x+1,看是否满足即可.详解:当x=1时,y=-x+1=0;当x=2时,y=-x+1=-1;当x=3时,y=-x+1=-2;当x=4时,y=-x+1=-3;所以点(2,-1)在直线y=-x+1上.故选A.点睛:本题主要考查了一次函数上的坐标特征,关键在于理解一次函数上的坐标特征.7、A【解析】

根据平行四边形的判定方法逐个判断即可解决问题.【详解】解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;B、∵AB∥CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠A+∠B=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;故选:A.【点睛】本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.8、B【解析】

根据段垂直平分线的判定定由AC=AD得到点A在线段CD的垂直平分线上,由BC=BD得到点B在线段CD的垂直平分线上,而两点确定一直线,所以可判断AB垂直平分CD.【详解】解:∵AC=AD,∴点A在线段CD的垂直平分线上,∵BC=BD,∴点B在线段CD的垂直平分线上,∴AB垂直平分CD.故选:B.【点睛】本题考查了线段垂直平分线的判定与性质:到线段两端点的距离相等的点在这条线段的垂直平分线上;线段垂直平分线上任意一点,到线段两端点的距离相等.9、C【解析】

根据一次函数的平移特点即可求解.【详解】∵将一次函数y=4x的图象向上平移3个单位长度,∴得到图象对应的函数解析式为y=4x+3故选C.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的平移特点.10、D【解析】分析:根据根与系数的关系可得出x1x2=1,此题得解.详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,∴x1x2=1.故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,

∴小军能一次打开该旅行箱的概率是:.故答案是:.【点睛】解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).12、3【解析】

首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.【详解】解:∵,∴AD=BC,AD∥BC,∴和的高相等,设其高为,又∵,∴BE=3BC=3AD,又∵,∴故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.13、【解析】

过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.【详解】如图,过点A1分别作正方形两边的垂线A1D与A1E,

∵点A1是正方形的中心,

∴A1D=A1E,

∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,

∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,

∴△A1BD≌△A1CE(ASA),

∴△A1BD的面积=△A1CE的面积,

∴两个正方形的重合面积=正方形面积=,∴重叠部分的面积和为×2=.故答案是:.【点睛】考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.14、>【解析】

根据一次函数的性质即可得答案.【详解】∵一次函数y=-3x+1中,-3<0,∴函数图象经过二、四象限,y随x的增大而减小,∵-4<1,∴y1>y2,故答案为:>【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.15、正确【解析】

先去括号,再把除法变为乘法化简,化简后代入数值判断即可.【详解】解:,因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,所以把“”错抄成“”,计算结果也是正确的,故答案为:正确.【点睛】本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.16、10℃【解析】

根据极差的定义进行计算即可【详解】解:∵根据折线图可得:本周的最高气温为30℃,最低气温为20℃,∴极差是:30-20=10(℃)故答案为:10℃【点睛】本题考查了极差的定义和折线图,熟练掌握极差是最大值和最小值的差是解题的关键17、1【解析】

根据极差的定义求解.【详解】解:数据:3,5,1,12,6,所以极差=12-3=1.

故答案为:1.【点睛】本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.18、5cm【解析】

只要得出OE是△ABC的中位线,从而求得OE的长.【详解】解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=10cm,∴OE=5cm.故答案为5cm.【点睛】本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.三、解答题(共66分)19、解:(1)﹣m(1﹣m)2;(2).【解析】

(1)先提取公因式−m,再利用完全平方公式分解可得;(2)先计算括号内分式的加减运算,再将除法转化为乘法,继而约分可得.【详解】解:(1)原式=﹣m(1﹣2m+m2)=﹣m(1﹣m)2;(2)原式=.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的基本步骤.20、(1)m=-2;(2)m≠2时,y是x的一次函数【解析】

(1)根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,即可求解;(2)根据一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,即可求解.【详解】(1)当m2-4=0且m-2≠0时,y是x的正比例函数,解得m=-2;(2)当m-2≠0时,即m≠2时,y是x的一次函数.【点睛】本题考查正比例函数的定义,一次函数的定义.21、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】

(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.【点睛】此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.22、(1);(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解析】

(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=设药物燃烧后y关于x的函数关系式为y=(k2>0)代入(8,6)为6=,∴k2=48∴药物燃烧时y关于x的函数关系式为(0≤x≤8)药物燃烧后y关于x的函数关系式为(x>8)∴(2)结合实际,令中y≤1.6得x≥30即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23、(2)-i,2;(2)7-i;(3)i-2.【解析】试题分析:(2)把代入求出即可;

(2)根据多项式乘以多项式的计算法则进行计算,再把代入求出即可;

(3)先根据复数的定义计算,再合并即可求解.试题解析:(2)故答案为−i,2;(2)(3)24、(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【解析】

(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.【详解】解:(1)∵y1=x+3,∴当y1=0时,x+3=0,解得x=﹣4,当x=0时,y1=3,∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(1)解方程组,得,则点C坐标为(﹣1,);(3)如果y1>y1,那么x的取值范围是x<﹣1.故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【点睛】本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.25、【解析】

原式各项化为最简二次根式后,先算乘法后算加减,合并可得到结果.【详解】解:原式==【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.26、(1)见解析;(2)见解析;(3)【解析】

(1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.

(3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.【详解】(1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.∵AH⊥BC,

∴∠AHB=∠DFC=90°,

∵AD∥BC,

∴∠ADF+∠AFD=180°,

∴∠ADF=180°−90°=90°,

∴四边形AHFD为矩形,

∴AH=DF,

∵AH=DF,AB=CD,

∴△ABH≌△DCF(HL)

∴∠B=∠DCF,

∴AB∥CD.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β,则∠CED=2∠ADE+2∠BAH=2α+2β.∵AB∥CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论