浙江省绍兴市越城区五校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第1页
浙江省绍兴市越城区五校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第2页
浙江省绍兴市越城区五校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第3页
浙江省绍兴市越城区五校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第4页
浙江省绍兴市越城区五校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市越城区五校联考2024年数学八年级下册期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选().

平均数

9

8

方差

1

1

A.甲 B.乙 C.丙 D.丁2.如图,在平行四边形ABCD中,,,AC,BD相交于点O,,交AD于点E,则的周长为A.20cm B.18cm C.16cm D.10cm3.能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4.如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为().A.(-a,-2b) B.(-2a,-b) C.(-2a,-2b) D.(-2b,-2a)5.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<16.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.7.下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差8.在平行四边形中cm,cm,则平行四边形的周长为()A.cm B.cm C.cm D.cm9.已知,则化简的结果是()A. B. C.﹣3 D.310.一次函数y2x2的大致图象是()A. B. C. D.二、填空题(每小题3分,共24分)11.边长为2的等边三角形的面积为__________12.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.13.一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.14.在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.15.将直线y=﹣2x+3向下平移2个单位得到的直线为_____.16.如图,是某地区5月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.17.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯顶端距离地面AO=12,梯子底端离墙角的距离BO=5m.亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,请问这个定值是_______.18.己知反比例函数的图像经过第一、三象限,则常数的取值范围是___.三、解答题(共66分)19.(10分)初三年级学习压力大,放学后在家自学时间较初一、初二长,为了解学生学习时间,该年级随机抽取25%的学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题:学习时间(h)11.522.533.5人数72365418(1)初三年级共有学生_____人.(2)在表格中的空格处填上相应的数字.(3)表格中所提供的学生学习时间的中位数是_____,众数是_____.20.(6分)某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80元/件,售价为120元/件;乙种童衣的进价为100元/件,售价为150元/件.设购进甲种童衣的数量为(件),销售完这批童衣的总利润为(元).(1)请求出与之间的函数关系式(不用写出的取值范围);(2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?21.(6分)如图,在四边形中,、、、分别是、、、的中点,.求证:.22.(8分)甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:(1)A、B两地的距离是__________km;(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;(3)请直接写出甲、乙两车何时相聚15km。23.(8分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?24.(8分)如图,在边长为24cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟2cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟4cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=cm,BQ=cm;(2)经过几秒△BPQ的面积等于?(3)经过几秒后,△BPQ是直角三角形?25.(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000酒店豪华间有多少间?旺季每间价格为多少元?26.(10分)计算:(4+)(4﹣)

参考答案一、选择题(每小题3分,共30分)1、C【解析】

试题分析:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.考点:1、方差;2、折线统计图;3、加权平均数2、A【解析】

根据平行四边形对角线互相平分可知点O是BD中点,继而可判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,即可得出答案.【详解】∵四边形ABCD是平行四边形,AC、BD交于点O,∴BO=DO,由∵EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD=20cm,故选A.【点睛】本题考查了平行四边形的性质以及中垂线的判定及性质等,正确得出BE=ED是解题关键.3、D【解析】

根据平行四边形的判定定理进行推导即可.【详解】解:如图所示:若已知一组对边平行,一组对角相等,易推导出另一组对边也平行,两组对边分别平行的四边形是平行四边形.故根据平行四边形的判定,只有D符合条件.故选D.考点:本题考查的是平行四边形的判定点评:解答本题的关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.4、C【解析】

根据位似图形的性质结合图形写出对应坐标即可.【详解】∵小“鱼”与大“鱼”的位似比是∴大“鱼”上对应“顶点”的坐标为(-2a,-2b)故答案为:C.【点睛】本题考查了位似图形的问题,掌握位似图形的性质是解题的关键.5、B【解析】

根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【详解】解:根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,∴不等式组的解集为:x<﹣2,故选:B.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.6、C【解析】A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选C.7、A【解析】

由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.8、D【解析】

根据平行四边形的性质得出对边相等,进而得出平行四边形ABCD的周长.【详解】解:∵平行四边形ABCD中,AD=4cm,AB=3cm,

∴AD=BC=4cm,AB=CD=3cm,

则行四边形ABCD的周长为:3+3+4+4=14(cm).

故选:D.【点睛】此题主要考查了平行四边形的性质,熟练掌握平行四边形对边之间的关系是解题关键.9、D【解析】

先把变形为+,根据a的取值范围可确定1-a和a-4的符号,然后根据二次根式的性质即可得答案.【详解】=+∵2<a<4,∴1-a<0,a-4<0,∴+=-(1-a)-(a-4)=-1+a-a+4=3,故选D.【点睛】本题考查了二次根式的化简,当a≥0时,=a;当a<0时,=-a;熟练掌握二次根式的性质是解题关键.10、A【解析】

先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【详解】解:∵k=2,b=-2,∴函数y=2x-2的图象经过第一、三、四象限.故选:A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.二、填空题(每小题3分,共24分)11、【解析】

根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴∴故答案为:【点睛】考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.12、2【解析】

根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.

所以这5个数据分别是x,y,2,1,1,且x<y<2,

当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,

所以这组数据可能的最大的和是0+1+2+1+1=2.

故答案为:2.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.13、1【解析】

根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.【详解】∵这组数据的中位数和平均数相等,∴(4+5)÷2=(2+4+5+x)÷4,解得:x=1.故答案为:1.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.14、1或2或4【解析】

如图1:当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=10°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=10°,∴△PBC是等边三角形,∴CP=BC=1;如图3:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°﹣30°=30°,∴PC=PB,∵BC=1,∴AB=3,∴PC=PB===2如图4:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°+30°=90°,∴PC=BC÷cos30°=4.故答案为1或2或4.考点:解直角三角形15、y=﹣2x+2【解析】

根据一次函数图象与几何变换得到直线y=-2x+3向下平移2个单位得到的函数解析式为y=-2x+3-2.【详解】解:直线y=﹣2x+3向下平移2个单位得到的函数解析式为y=﹣2x+3﹣2=﹣2x+2.故答案为:y=﹣2x+2【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16、10℃【解析】

根据极差的定义进行计算即可【详解】解:∵根据折线图可得:本周的最高气温为30℃,最低气温为20℃,∴极差是:30-20=10(℃)故答案为:10℃【点睛】本题考查了极差的定义和折线图,熟练掌握极差是最大值和最小值的差是解题的关键17、【解析】

根据勾股定理求出AB的长度,然后由直角三角形斜边上的中线的性质回答问题.【详解】解:在Rt△ABO中,AO=12,BO=5,∴,∵直角三角形斜边上的中线等于斜边的一半,∴AB上的中点到墙角O的距离总是定值,此定值为.故答案为:.【点睛】本题考查了勾股定理的应用,以及斜边上的中线等于斜边的一半,解题的关键是在直角三角形中弄清直角边和斜边.18、【解析】

根据反比例函数的性质可得3k+1>0,再解不等式即可.【详解】∵双曲线的图象经过第一、三象限,∴3k+1>0,解得.故答案为:.【点睛】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质.对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.三、解答题(共66分)19、(1)1440;(2)见解析;(3)2.21、3.1.【解析】

(1)先利用学习1小时的人数除以它所占的百分比得调查的总人数,然后用此人数除以21%得到初三年级的人数;(2)用调查的总人数分别乘以20%和30%得到学习1.1小时和3.1小时的人数;(3)根据中位数和众数的定义求解.【详解】(1)72÷20%=360,360÷21%=1440,所以初三年级共有学生1440人;(2)学习1.1小时的人数为360×20%=72(人),学习3.1小时的人数为360×30%=108(人);(3)表格中所提供的学生学习时间的中位数是=2.21,众数是3.1.【点睛】本题考查了扇形图:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了众数和中位数.20、(1);(2)75件,4250元.【解析】

(1)总利润=甲种童衣每件的利润×甲种童衣的数量+乙种童衣每件的利润×乙种童衣的数量,根据等量关系列出函数解析式即可;(2)根据题意,先得出x的取值范围,再根据函数的增减性进行分析即可.【详解】解:(1)∵甲种童衣的数量为件,,是乙种童衣数量为件;依题意得:甲种童衣每件利润为:元;乙种童衣每件利润为:元∴,∴;(2),,∵中,,∴随的增大而减小,∵,∴时,答:购进甲种童衣为75件时,这批童衣销售完获利最多为4250元.【点睛】本题考查了一次函数的应用.21、见解析.【解析】

连接,,根据是的中点,及、、分别是、、的中点可以证明【详解】解:证明:连接,.∵是的中点,.∴.∵、、分别是、、的中点,∴,,∴.【点睛】本题主要考查了三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.22、(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km【解析】

(1)根据图象解答即可;(2)根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3)根据题意,利用分类讨论的数学思想可以求得x的值.【详解】解:(1)观察图象可得:A、B两地的距离是180km;(2)由题意得,甲车的平均速度为:180÷(3-1)=90所以当x=1时,y=90当x=2时,y=90当2≤x≤3时,设(k≠0)点(2,90),(3,180)在直线上因此有解得:∴∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:(3)设乙车行驶过程中y与x之间的函数关系式是y=ax,

180=3a,得a=60,

∴乙车行驶过程中y与x之间的函数关系式是y=60x,∴60x=90,得x=1.5,即两车1.5小时相遇,当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,

∴90x-60x=15,得x=,

90-60x=15时,x=1.25,当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,

90=x,

∴60x-90=1.5,得x=1.75;60x-(90x-90)=15,得x=2.5由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.23、每件童装应降价1元.【解析】

设每件童装应降价x元,原来平均每天可售出1件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利110元,由此即可列出方程(40-x)(1+2x)=110,解方程就可以求出应降价多少元.【详解】如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40-x)(1+2x)=110,整理得x2-30x+10=0,解之得x1=10,x2=1,因要减少库存,故x=1.答:每件童装应降价1元.【点睛】首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.24、(1)12、1;(2)经过2秒△BPQ的面积等于.(3)经过6秒或秒后,△BPQ是直角三角形.【解析】

(1)根据路程=速度×时间,求出BQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论