




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市第七十八中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在中,分别为内角的对边,且则等于A.30°
B.45°
C.60°
D.120°参考答案:D结合余弦定理,得,可求出。解:由得:,,则=120°。故选D。考点:余弦定理.点评:本题主要考查了余弦定理的应用,属于基础试题2.已知椭圆C1:+y2=1(m>1)与双曲线C2:-y2=1(n>0)的焦点重合,e1,e2,分别为C1,C2的离心率,则(
).A.m<n且e1e2<1 B.m>n且e1e2<1C.m>n且e1e2>1 D.m<n且e1e2>1参考答案:C解:椭圆焦点为,双曲线集点为,则有,解得,,,.故选.3.若两条直线与同一个平面相交成等角,则这两条直线的位置关系是()A.
平行
B.异面
C.相交
D.平行、异面或相交参考答案:D略4.要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为()A.①简单随机抽样调查,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样参考答案:B【考点】简单随机抽样;分层抽样方法.【分析】从总体的个体有无差异和总数是否比较多入手选择抽样方法.①中某社区420户家庭的收入差异较大;②中总体数量较少,且个体之间无明显差异.【解答】解:①中某社区420户家庭的收入有了明显了差异,所以选择样本时宜选用分层抽样法;②个体没有差异且总数不多可用简单随机抽样法.故选:B.5.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2 B.3 C.6 D.8参考答案:C【考点】椭圆的标准方程;平面向量数量积的含义与物理意义.【专题】综合题;压轴题.【分析】先求出左焦点坐标F,设P(x0,y0),根据P(x0,y0)在椭圆上可得到x0、y0的关系式,表示出向量、,根据数量积的运算将x0、y0的关系式代入组成二次函数进而可确定答案.【解答】解:由题意,F(﹣1,0),设点P(x0,y0),则有,解得,因为,,所以=,此二次函数对应的抛物线的对称轴为x0=﹣2,因为﹣2≤x0≤2,所以当x0=2时,取得最大值,故选C.【点评】本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力.6.下列函数中,存在极值点的是A. B. C. D. E.参考答案:BDE【分析】利用导数求得函数的单调性,再根据函数极值的概念,即可求解,得到答案.【详解】由题意,函数,则,所以函数在内单调递增,没有极值点.函数,根据指数函数的图象与性质可得,当时,函数单调递减,当时,函数单调递增,所以函数在处取得极小值;函数,则,所以函数在上单调递减,没有极值点;函数,则,当时,,函数单调递减,当时,,函数单调递增,当时,函数取得极小值;函数,则,当时,,函数单调递减,当时,,函数单调递增,所以处取得极小值.故选BDE.【点睛】本题主要考查了利用导数研究函数的极值问题,其中解答中利用导数求得函数的单调性,确定函数的极值点或极值是解答的关键,着重考查了推理与运算能力,属于基础题.7.设x,y满足约束条件,则z=3x+y的最大值为()A.5 B.3 C.7 D.﹣8参考答案:C【考点】简单线性规划.【分析】首先作出可行域,再作出直线l0:y=﹣3x,将l0平移与可行域有公共点,直线y=﹣3x+z在y轴上的截距最大时,z有最大值,求出此时直线y=﹣3x+z经过的可行域内的点A的坐标,代入z=3x+y中即可.【解答】解:如图,作出可行域,作出直线l0:y=﹣3x,将l0平移至过点A(3,﹣2)处时,函数z=3x+y有最大值7.故选C.8.已知点是抛物线上的动点,点在轴上的射影是,点,则的最小值是(
)(A)5
(B)
(C)4
(D)参考答案:B略9.下列命题正确的是(
)A.命题,的否定是:,B.命题中,若,则的否命题是真命题C.如果为真命题,为假命题,则为真命题,为假命题D.是函数的最小正周期为的充分不必要条件参考答案:D在A中,命题,的否定是:,,故A错误;在B中,命题中,若,则的否命题是假命题,故B错误;在C中,如果为真命题,为假命题,则与中一个是假命题,另一个是真命题,故C错误;在D中,,∴函数的最小正周期为,函数的最小正周期为.∴是函数的最小正周期为的充分不必要条件,故D正确.故选D.10.高二某班共有学生56人,座号分别为1,2,3,…,56现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知4号、18号、46号同学在样本中,那么样本中还有一个同学的座号是()A.30 B.31 C.32 D.33参考答案:C【考点】系统抽样方法.【分析】根据系统抽样原理求出抽样间隔,由第一组抽出的学号得出每组抽出的学号是什么.【解答】解:根据系统抽样原理得,抽样间隔是=14,且第一组抽出的学号为4,那么每组抽出的学号为4+14(n﹣1),其中n=1、2、3、4;所以第二组抽取的学号为4+14×2=32.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.若某程序框图如右图所示,该程序运行后,输出的,则等于
.参考答案:712.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)为
。参考答案:略13.我们把1,4,9,16,25,…这些数称为正方形数,这是因为这些数目的点可以排成正方形(如图).由此可推得第n个正方形数是.参考答案:n2【考点】归纳推理.【分析】根据12=1,22=4,32=9,可得第n个正方形数.【解答】解:∵12=1,22=4,32=9,∴第n个正方形数就是n2.故答案为:n214.抛物线的焦点坐标是_____________.参考答案:试题分析:焦点坐标,所以考点:抛物线焦点坐标.15.不等式的解集______________.参考答案:略16.若AB是过二次曲线中心的任一条弦,M是二次曲线上异于A、B的任一点,且AM、BM均与坐标轴不平行,则对于椭圆有。类似地,对于双曲线有=
。参考答案:略17.过椭圆的右焦点作x轴的垂线交椭圆于A、B两点,已知双曲线的焦点在x轴上,对称中心在坐标原点且两条渐近线分别过A、B两点,则双曲线的离心率是(
)A.
B.
C.
D.参考答案:B略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知“一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大”.(1)设圆和正方形的周长为,请你用分别表示出圆和正方形的面积,并用分析法证明该命题;(2)类比球体与正方体,写出一个正确的命题(不要求证明)。参考答案:(1)依题意,圆的面积为,正方形的面积为.因此本题只需证明.要证明上式,只需证明,两边同乘以正数,得.因此,只需证明.恒成立,所以.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积大.(2)一个球与一个正方体的表面积相等时,球的体积比正方体的体积大。19.(本小题满分12分)已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C(1)求曲线C的方程.(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程参考答案:(1)由题意知,P到F的距离等于P到的距离,所以P的轨迹C是以F为焦点,为准线的抛物线,它的方程为
(2)设则
由AB为圆M的直径知,故直线的斜率为直线AB的方程为即20.已知函数,曲线在点处的切线方程为.(1)求函数的解析式;(2)过点能作几条直线与曲线相切?说明理由.参考答案:解(1),由题知…………………(1分)∴…………(5分)(2)设过点(2,2)的直线与曲线相切于点,则切线方程为:即……………………(7分)由切线过点(2,2)得:过点(2,2)可作曲线的切线条数就是方程的实根个数……(9分)令,则由得当t变化时,、的变化如下表t0(0,2)2+0-0+↗极大值2↘极小值-2↗由知,故有三个不同实根可作三条切线…………(13分)略21.已知抛物线的焦点为F,准线为,点,A在上的射影为B,且是边长为4的正三角形.(1)求p;(2)过点F作两条相互垂直的直线与C交于P,Q两点,与C交于M,N两点,设的面积为的面积为(O为坐标原点),求的最小值.参考答案:(1)2;(2)16.【分析】(1)设准线与轴的交点为点,利用解直角三角形可得.(2)直线,联立直线方程和抛物线方程后利用韦达定理可用关于的关系式表示,同理可用关于的关系式表示,最后用基本不等式可求的最小值.【详解】(1)解:设准线与轴的交点为点,连结,因为是正三角形,且,在中,,所以.(2)设,直线,由知,联立方程:,消得.因为,所以,所以,又原点到直线的距离为,所以,同理,所以,当且仅当时取等号.故的最小值为.【点睛】圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以为斜率或点的横、纵坐标等.而目标函数的最值可以通过基本不等式或导数等求得.22.从某学校高二年级共800名男生中随机抽取50名测量身高.据测量知被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165);…第八组[190,195),下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组的人数相同,第六组、第七组、第八组人数依次构成等差数列.(Ⅰ)估计这所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金昌市重点中学2025年高三下学期联合考试化学试题含解析
- 江西省南昌市南昌一中等三校2025届高考化学必刷试卷含解析
- 广东省揭阳市榕城区揭阳三中2025届高三第四次模拟考试化学试卷含解析
- 2025年医用氮气系统项目合作计划书
- 建筑行业人员证书
- 口腔技工基本操作规范
- 河南省九师联盟2024-2025学年高三下学期3月质量检测地理试题(含答案)
- 2025届河南省郑州市第一〇六中学高三下学期第六次检测化学试卷含解析
- 2025年超高压电缆输电系统项目合作计划书
- 学生健康体检外科项目培训
- 2024年天津市滨海新区九年级语文学业质量调查试卷(一)附答案解析
- 《阻燃材料与技术》课件 第7讲 阻燃橡胶材料
- 2024新版(闽教版)三年级英语上册单词带音标
- 2024-2030年中国电渣锭市场竞争力深度研究与需求状况预测研究报告
- 2024中国人寿浙江省分公司校园招聘109人高频难、易错点500题模拟试题附带答案详解
- 中广核招聘笔试题库2024
- 数字孪生水利项目建设可行性研究报告
- 中日饮食文化差异
- 08J933-1体育场地与设施(一)
- ISO 55000-2024 资产管理 术语、综述和原则(中文版-雷泽佳翻译-2024)
- 2024年江苏省苏州市中考语文试题
评论
0/150
提交评论