版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市三口塘乡中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数,若对于任意∈[0,2]都有成立,则实数的取值范围为(
)
A.
B.
C.
D..参考答案:A2.定义在R上的函数f(x)满足:f′(x)>f(x)恒成立,若x1<x2,则f(x2)与f(x1)的大小关系为()A.f(x2)>ex2f(x1)B.f(x2)<f(x1)C.f(x2)=f(x1)D.f(x2)与f(x1)的大小关系不确定参考答案:A【考点】函数恒成立问题.【分析】构造函数g(x)=,可得g′(x)=>0,于是函数g(x)在R上单调递增,进而得出.【解答】解:构造函数g(x)=,则g′(x)=>0,因此函数g(x)在R上单调递增,∵x1<x2,∴g(x1)<g(x2),即<,因此:f(x2)>f(x1).故选:A.3.已知命题p:存在实数x使sinx=成立,命题q:x2﹣3x+2<0的解集为(1,2).给出下列四个结论:①“p且q”真,②“p且非q”假,③“非p且q”真,④“非p或非q”假,其中正确的结论是()A.①②③④ B.①②④ C.②③ D.②④参考答案:C【考点】复合命题的真假.【分析】先判断命题p为假,命题q为真,再利用命题之间的关系判断复合命题即可.【解答】解:∵sinx=>1∴命题p为假命题,非p为真命题又命题q:x2﹣3x+2<0的解集为(1,2)是真命题,非q为假命题根据复合命题的真值表:∴p且q为假命题故①不正确p且非q为假命题故②正确非p且q为真命题故③正确非p或非q为假命题故④不正确故选C4.若,表示一个圆的方程,则的取值范围是(
). A. B. C. D.参考答案:C圆为,半径为,..5.直线的倾斜角范围是
(
)(A)
(B)
(C)
(D)参考答案:C略6.在复平面内,复数对应的点位于【
】.A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:D7.下列几何体各自的三视图中,有且仅有两个视图相同的是(
).A.①②
B.①③
C.①④
D.②④参考答案:D略8.已知函数的图像如图(第11题图)
所示,且.则的值是
▲
.参考答案:3略9.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)
B.-f(x)
C.g(x)
D.-g(x)
参考答案:D10.已知直线与双曲线,有如下信息:联立方程组:,消去后得到方程,分类讨论:(1)当时,该方程恒有一解;(2)当时,恒成立。在满足所提供信息的前提下,双曲线离心率的取值范围是A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.在正三棱柱ABC﹣A1B1C1中,若,则AB1与C1B所成的角的大小为
.参考答案:900 ()12.平面上三条直线x﹣2y+1=0,x﹣1=0,x+ky=0,如果这三条直线将平面划分为六部分,则实数k的取值集合为.参考答案:{0,﹣1,﹣2}【考点】直线的一般式方程与直线的平行关系;直线的一般式方程与直线的性质;两条直线的交点坐标.【分析】如果这三条直线将平面划分为六部分包括两种情况能够成立,一是x+ky=0过另外两条直线的交点,做出交点坐标代入直线方程,得到k的值,二是这条直线与另外两条直线平行,求出k的值.【解答】解:若是三条直线两两相交,交点不重合,则这三条直线把平面分成了7部分,∴如果这三条直线将平面划分为六部分包括两种情况能够成立,一是x+ky=0过另外两条直线的交点,x﹣2y+1=0,x﹣1=0的交点是(1,1)∴k=﹣1,二是这条直线与另外两条直线平行,此时k=0或﹣2,故答案为:{0,﹣1,﹣2}13.已知为等差数列,,则,若为等比数列,,则的类似结论为:
参考答案:试题分析:因为在等差数列中有,等比数列中有,所以为等比数列,,的类似结论为.故答案为:
考点:类比推理14.10个人平均分成两组,则不同的分法有____________________种.参考答案:15.若中,,那么=
参考答案:略16.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.参考答案:【考点】双曲线的简单性质.【分析】根据双曲线方程为x2﹣y2=1,可得焦距F1F2=2,因为PF1⊥PF2,所以|PF1|2+|PF2|2=|F1F2|2.再结合双曲线的定义,得到|PF1|﹣|PF2|=±2,最后联解、配方,可得(|PF1|+|PF2|)2=12,从而得到|PF1|+|PF2|的值为.【解答】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:17.函数的减区间是
▲
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(Ⅰ)当时,求曲线在处的切线方程()(Ⅱ)求函数的单调区间。参考答案:(Ⅰ)
所以直线的斜率
故所求切线方程为
(2)①当时,在增,在减;②当时,在增,在减;③当时,在增;④当时,在增,在减。略19.为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:
40岁及以下40岁以上合计基本满意151025很满意253055合计404080
(1)根据列联表,能否有85%的把握认为满意程度与年龄有关?(2)若已经在满意程度为“基本满意”的职员中用分层抽样的方式选取了5名职员,现从这5名职员中随机选取3名进行面谈求面谈的职员中恰有2名年龄在40岁及以下的概率.
附:,其中.参考数据:0.500.400.250.150.100.050.0250.0100.4550.7081.3232.0722.7063.8415.0246.635
参考答案:(1)没有85%的把握(2)【分析】(1)根据列联表可以求得K2的观测值,结合临界值表可得;(2)由题意,在满意程度为“基本满意“的职员中用分层抽样的方式选取5名职员,应抽取40岁以下和40岁以上分别为3名和2名,记为A,B,C,d,e,然后用列举法列举出随机选3名的基本事件和面谈的职员中恰有2名年龄在40岁及以下的基本事件,然后用古典概型的概率公式可得.【详解】(1)根据列联表可以求得的观测值:.
∵.∴没有85%的把握认为满意程度与年龄有关.
(2)由题意,在满意程度“基本满意”的职员中用分层抽样的方式选取5名职员,应抽取40岁及以下和40岁以上分别为3名和2名,记为,,,,.
则随机选3名,基本事件为:,,,,,,,,,,共10个.
满足题意的基本事件为:,,,,,,共6个.
设从这5名职员中随机选取3名进行面谈,面谈的职员中恰有2名年龄在40岁及以下的概率为.则.【点睛】本题考查了独立性检验,属中档题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.20.已知点A(2,a),圆C:(x-1)2+y2=5。(I)若过点A只能作一条圆C的切线,求实数a的值及切线方程;(II)设直线l过点A但不过原点,且在两坐标轴上的截距相等,若直线l被圆C截得的弦长为2,求实数a的值。参考答案:21.设函数.(1)求f(x)的单调区间和极值;(2)关于的方程f(x)=a在区间上有两个根,求a的取值范围.
参考答案:解:(1),由得
(2分)x03f’(x)22.如果函数满足:对定义域内的所有x,存在常数a,b,都有,那么称是“中心对称函数”,对称中心是点.(1)判断函数是否为“中心对称函数”,若是“中心对称函数”求出对称中心,若不是“中心对称函数”请说明理由;(2)已知函数(且,)的对称中心是点(-3,0).①求实数k的值;②若存在,使得在上的值域为,求实数m的取值范围.参考答案:(1)不是“中心对称函数”.详见解析(2)①②【分析】(1)证明所以不是“中心对称函数”;(2)①由题得求出k=1;②分析得到在上单调递减,即,是方程的两个实根.转化为在有两个不等实根求出m的范围.【详解】(1)不是“中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版实验室装修、设备采购一体化合同范本3篇
- 2025版庭院园艺设计租赁合同示范文本大全3篇
- 《社会主义发展战略》课件
- 《我的家乡河北》课件
- 基于2025年度标准的软件开发与技术服务合同3篇
- 2025版木托盘产业链整合合同4篇
- 2025版学校饭堂食品安全与营养管理承包合同3篇
- 云母制品在平板电脑触控面板材料中的应用考核试卷
- 公路工程现场急救与事故处理考核试卷
- 2025年度木材进出口贸易代理合同标准文本2篇
- 2024版个人私有房屋购买合同
- 2024爆炸物运输安全保障协议版B版
- 《食品与食品》课件
- 读书分享会《白夜行》
- 光伏工程施工组织设计
- DB4101-T 121-2024 类家庭社会工作服务规范
- 化学纤维的鉴别与测试方法考核试卷
- 2024-2025学年全国中学生天文知识竞赛考试题库(含答案)
- 临床微生物检查课件 第2章细菌的生理
- 作品著作权独家授权协议(部分授权)
- 取水泵站施工组织设计
评论
0/150
提交评论