版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖南省常德市市鼎城区白鹤山乡中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在二项式的展开式中,各项系数之和为A,各项二项式系数之和为B,且,则展开式中常数项的值为
(
)
、6
、9
、12
、18参考答案:B2.等差数列24,22,20,…的前n项和Sn的最大值是(
)
A.154
B.156 C.158 D160
参考答案:B略3.已知数列{an}是等差数列,若它的前n项和Sn有最小值,且<-1,则使Sn>0成立的最小自然数n的值为(
)A.18
B.19
C.20
D.21参考答案:C略4.观察下面的演绎推理过程,判断正确的是()大前提:若直线a⊥直线l,且直线b⊥直线l,则a∥b.小前提:正方体ABCD﹣A1B1C1D1中,A1B1⊥AA1.且AD⊥AA1结论:A1B1∥AD.A.推理正确 B.大前提出错导致推理错误C.小前提出错导致推理错误 D.仅结论错误参考答案:B【考点】F5:演绎推理的意义.【分析】本题考查的知识点是演绎推理的基本方法及整数的,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,根据“若直线a⊥直线l,且直线b⊥直线l,此时a,b可能平行,可能异面,也可能相交,可知:已知前提错误.【解答】解:∵若直线a⊥直线l,且直线b⊥直线l,此时a,b可能平行,可能异面,也可能相交,∴大前提:若直线a⊥直线l,且直线b⊥直线l,则a∥b错误,故这个推理过程中,大前提出错导致推理错误,故选:B【点评】演绎推理的主要形式就是由大前提、小前提推出结论的三段论推理.三段论推理的依据用集合论的观点来讲就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论.演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.5.已知为等比数列,,,则()A.
B.
C.
D.参考答案:A略6.已知cos2α=,则sin2α=()A. B. C. D.参考答案:D【考点】同角三角函数基本关系的运用;二倍角的余弦.【分析】直接利用二倍角的余弦函数公式,求出sin2α的值,得出选项.【解答】解:cos2α=1﹣2sin2α,∴=1﹣2sin2α,∴sin2α=,故选D.【点评】本题是基础题,考查同角三角函数的基本关系式,二倍角的余弦,是计算题.7.已知sinα=,且α为第二象限角,那么tanα的值等于
(
)A.
B.
C.
D.参考答案:B8.下列说法错误的是
(
)A、“”是“”的必要不充分条件B、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”;C、若命题p:x∈R,x2-x+1<0,则p:x∈R,x2-x+1≥0;D、函数的单调增区间是
参考答案:D9.某初级中学有学生270人,其中初一年级108人,初二、三年级各有81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按初一、二、三年级依次统一编号为;使用系统抽样时,将学生统一随机编号为,并将整个编号依次分为段.如果抽得号码(10个)有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是
(
)A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样参考答案:B略10.直线的参数方程是(
)A(t为参数)
B(t为参数)C
(t为参数)
D(为参数)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19﹣n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则有.参考答案:【考点】类比推理.【分析】根据类比的方法,和类比积,加类比乘,由此类比即可得出结论.【解答】解:在等差数列{an}中,若a10=0,有等式a1+a2+…+an=a1+a2+…+a19﹣n(n<19,n∈N*)成立,∴在等比数列{bn}中,若b9=1,则有等式.故答案为:.12.如图所示,在空间四边形OABC中,,点M在线段OA上,且,N为BC中点,若,则_____________参考答案:【分析】用表示,从而求出,即可求出,从而得出答案【详解】点在上,且,为的中点故故答案为【点睛】本题主要考查了平面向量的线性运算,运用向量的加法法则来求解,属于基础题13.下列各图中,、为正方体的两个顶点,、、分别为其所在棱的中点,能得出//平面的图形的序号是_____________.参考答案:①③略14.已知a,b都是正实数,函数y=2aex+b的图象过点(0,1),则的最小值是
.参考答案:考点:基本不等式.专题:不等式的解法及应用.分析:把点(0,1)代入函数关系式即可得出a,b的关系,再利用基本不等式的性质即可得出.解答: 解:∵函数y=2aex+b的图象过点(0,1),∴1=2a+b,∵a>0,b>0.∴==3+=,当且仅当,b=时取等号.故答案为.点评:熟练掌握基本不等式的性质是解题的关键.15.对于回归方程,当时,的估计值为。参考答案:39016.曲线y=xlnx+1在点(1,1)处的切线方程是.参考答案:y=x【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程.【解答】解:y=xlnx+1的导数为y′=lnx+1,曲线y=xlnx+1在点(1,1)处的切线斜率为k=1,可得曲线y=xlnx+1在点(1,1)处的切线方程为y﹣1=x﹣1,即为y=x.故答案为:y=x.17.根据下面一组等式:
可得
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.以椭圆C:=1(a>b>0)的中心O为圆心,以为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为,且过点.(1)求椭圆C及其“伴随”的方程;(2)过点P(0,m)作“伴随”的切线l交椭圆C于A,B两点,记△AOB(O为坐标原点)的面积为S△AOB,将S△AOB表示为m的函数,并求S△AOB的最大值.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆C的离心率,结合a,b,c的关系,得到a=2b,设椭圆方程,再代入点,即可得到椭圆方程和“伴随”的方程;(2)设切线l的方程为y=kx+m,联立椭圆方程,消去y得到x的二次方程,运用韦达定理和弦长公式,即可得到AB的长,由l与圆x2+y2=1相切,得到k,m的关系式,求出三角形ABC的面积,运用基本不等式即可得到最大值.【解答】解:(1)椭圆C的离心率为,即c=,由c2=a2﹣b2,则a=2b,设椭圆C的方程为,∵椭圆C过点,∴,∴b=1,a=2,以为半径即以1为半径,∴椭圆C的标准方程为,椭圆C的“伴随”方程为x2+y2=1.(2)由题意知,|m|≥1.易知切线l的斜率存在,设切线l的方程为y=kx+m,由得,设A,B两点的坐标分别为(x1,y1),(x2,y2),则,.又由l与圆x2+y2=1相切,所以,k2=m2﹣1.所以=,则,|m|≥1.(当且仅当时取等号)所以当时,S△AOB的最大值为1.19.已知抛物线的焦点为F,过F且倾斜角为45°的直线与抛物线C相交于P,Q两点,且线段PQ被直线平分.(1)求p的值;(2)直线l是抛物线C的切线,A为切点,且,求以A为圆心且与PQ相切的圆的标准方程.参考答案:(1).(2).试题分析:(1)设,,则,由,得,∴可得结果;(2)设直线的方程为,代入,得,根据判别式为零求出圆心坐标,利用点到直线距离公式1求出圆的半径,从而可得圆的标准方程.试题解析:由题意可知,设,,则.(1)由,得,∴,即.(2)设直线的方程为,代入,得,∵为抛物线的切线,∴,解得,∴.∵到直接距离,∴所求圆的标准方程为.20.已知关于的不等式的解集为,求关于的不等式的解集.参考答案:解析:由题意可求得.
5分故所求不等式可化为,解得.
10分21.(本小题满分12分)已知:关于的不等式的解集是;:任意实数,不等式恒成立;求实数的取值范围使,为命题,且为真
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024八年级数学上册第五章平行四边形4多边形的内角与外角和第2课时多边形的外角和习题课件鲁教版五四制
- 2024年云南驾驶员客运从业资格证考试题及答案
- 2024年湛江客运从业资格证
- 2024年乌鲁木齐道路运输客运从业资格证考试模拟试题
- 城市轻轨工程施工组织设计
- 车辆违章处理委托书
- 幼儿园教学管理计划
- 建筑劳务施工合同15篇
- 幼儿园教研活动总结万能模板(32篇)
- 驾校教练安全承诺书范文(3篇)
- 第三单元达标练习(单元练习)2024-2025学年统编版语文一年级上册
- 摩托车个人租车协议书模板
- 历年中国农业发展银行秋季校园招聘笔试真题及答案
- 2024年统编版新教材语文小学一年级上册第二单元测试题(有答案)
- 2023-2024学年广东省深圳市福田区北师大版三年级上册期中考试数学试卷(原卷版)
- 2024年山东省高考物理试卷(真题+答案)
- 汉语词汇与文化智慧树知到期末考试答案章节答案2024年浙江师范大学
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 2023-2024学年教科版三年级上学期科学期中检测试卷(含答案)
- 2024年北京京能清洁能源电力股份有限公司招聘笔试参考题库含答案解析
- 三年级语文上册第五单元【教材解读】
评论
0/150
提交评论