2022年浙江省丽水市阜山中学高二数学文下学期期末试卷含解析_第1页
2022年浙江省丽水市阜山中学高二数学文下学期期末试卷含解析_第2页
2022年浙江省丽水市阜山中学高二数学文下学期期末试卷含解析_第3页
2022年浙江省丽水市阜山中学高二数学文下学期期末试卷含解析_第4页
2022年浙江省丽水市阜山中学高二数学文下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年浙江省丽水市阜山中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知定义在R上的奇函数,,对任意的,则不等式的解集为(▲)A.

B.

C.

D.参考答案:D略2.在△中,为上的一点,且是的中点,过点的直线∥,P是直线上的动点,,则=(

)A.

-1

B.

C.-2

D.参考答案:B略3.函数的图象可能是(

)A. B.C. D.参考答案:B【分析】根据可得正确的选项.【详解】设,,A,C,D均是错误的,选B.【点睛】本题考查函数图像的识别,注意从函数的奇偶性、单调性、特殊点函数值的正负等方面刻画函数的图像.4.设x,y满足约束条件,则的最大值为(

)A.

-1

B.

0

C.

2

D.3参考答案:D5.用反证法证明命题“是无理数”时,假设正确的是(

). A.假设是有理数 B.假设是有理数 C.假设或是有理数 D.假设是有理数参考答案:D反证法的假设是结论的反面.故选.6.设直线l与抛物线y2=4x相交于A,B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(2,4) B.(1,3) C.(1,4) D.(2,3)参考答案:A【考点】抛物线的简单性质.【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,相减得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴﹣2<y0<2,∵M在圆上,∴(x0﹣5)2+y02=r2,∴r2=y02+4≤12+4=16,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选A.7.已知m,n是两条直线,α,β是两个平面,有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是(

)A.0 B.1 C.2 D.3参考答案:B【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则由平面与平面平行的判定定理得α∥β,故①正确;②若m∥α,m∥β,则α与β相交或平行,故②错误;③若m∥α,n∥β,m∥n,则α与β相交或平行,故③错误.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.8.已知圆心为C(6,5),且过点B(3,6)的圆的方程为

)A.

B.

C.

D.参考答案:A9.已知m,n是两条相交直线,m∥平面α,则n与α的位置关系为()A.平行 B.相交 C.n在α内 D.平行或相交参考答案:D考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:画出图形,不难看出直线n与平面α的位置关系,平行或相交.解答:解:由题意画出图形,如当m,n所在平面与平面α平行时,n与平面α平行,当m,n所在平面与平面α相交时,n与平面α相交,故选D.点评:本题考查空间中直线与平面之间的位置关系,考查空间想象能力,是基础题.10.甲船在A处观察到乙船在它的北偏东的方向,两船相距海里,乙船正在向北行驶,若甲船的速度是乙船的倍,则甲船应取北偏东方向前进,才能尽快追上乙船,此时(

)A.

B.

C.

D.

参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=.参考答案:30°【考点】正弦定理.【分析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.【解答】解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°12.已知方程,有且仅有四个解,,,,则______.参考答案:由图可知,且时,与只有一个交点,令,则由,再由,不难得到当时与只有一个交点,即,因此点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.13.设函数,若,则

.参考答案:14.若直线是y=f(x)在x=2处的切线,则=______▲_______.参考答案:415.阅读下面的算法框图.若输入m=4,n=6,则输出a=________,i=_______.参考答案:略16.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,一条渐近线的倾斜角为30°,则该双曲线的标准方程为.参考答案:【考点】抛物线的简单性质.【专题】方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】求得抛物线的焦点,设双曲线的方程为﹣=1(a,b>0),求得渐近线方程和a,b,c的关系,解方程即可得到所求.【解答】解:抛物线x2=24y的焦点为(0,6),设双曲线的方程为﹣=1(a,b>0),即有c=6,即a2+b2=36,渐近线方程为y=±x,由题意可得tan30°=,即为b=a,解得a=3,b=3,即有双曲线的标准方程为:.故答案为:.【点评】本题考查抛物线的焦点的运用,考查双曲线的方程的求法和渐近线方程的运用,考查运算能力,属于中档题.17.设离散型随机变量的可能取值为,,,.,又的数学期望,则

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(x≥2)(Ⅰ)判断函数f(x)在区间[2,+∞)上的单调性,并利用定义证明你的结论;(Ⅱ)求函数f(x)的值域.参考答案:【考点】3E:函数单调性的判断与证明;34:函数的值域.【分析】(Ⅰ)根据题意,由作差法证明:设x1>x2≥2,化简f(x)的解析式,求出并分析f(x1)﹣f(x2)的符号,由函数单调性的定义即可得答案;(Ⅱ)由(Ⅰ)的结论,分析可得f(x)≥f(2),又由函数的解析式分析可得f(x)<3,综合即可得答案.【解答】解:(Ⅰ)函数f(x)=在区间[2,+∞)为增函数,证明如下:设x1>x2≥2,f(x)===﹣+3,则f(x1)﹣f(x2)=(﹣+3)﹣(﹣+3)=﹣=,又由x1>x2≥2,则有f(x1)﹣f(x2)>0,故函数f(x)=在区间[2,+∞)为增函数,(Ⅱ)由(Ⅰ)可得:函数f(x)=在区间[2,+∞)为增函数,则有f(x)≥f(2)=,又由f(x)===﹣+3<3,则有≤f(x)<3,即函数f(x)的值域为[,3).【点评】本题考查函数单调性的判定及应用,注意题干中x的取值范围.19.(12分)已知是函数的一个极值点,其中,(1)求与的关系式;

(2)求的单调区间;(3)当时,函数的图象上任意一点的切线斜率恒大于3m,求m的取值范围.参考答案:略20.已知数列{an}满足,.(Ⅰ)求的值,猜想数列{an}的通项公式并用数学归纳法证明;(Ⅱ)令,求数列{bn}的前n项和Tn.参考答案:(Ⅰ)见解析;(Ⅱ)【分析】(Ⅰ)根据,利用递推公式,可以求出的值,可以猜想出数列的通项公式,然后按照数学归纳法的步骤证明即可;(Ⅱ)利用错位相减法,可以求出数列的前项和.【详解】解:(Ⅰ)当时,当时,当时,猜想,下面用数学归纳法证明当时,,猜想成立,假设当()时,猜想成立,即则当时,,猜想成立综上所述,对于任意,均成立(Ⅱ)由(Ⅰ)得

②由①-②得:【点睛】本题考查了用数学归纳法求数列的通项公式,考查了用借位相减法求数列的前项和,考查了数学运算能力.21.如图,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F分别为AD,PA中点,在BC上有且只有一个点Q,使得PQ⊥QD.(1)求证:平面BEF∥平面PDQ;(2)求二面角E﹣BF﹣Q的余弦值.参考答案:【考点】二面角的平面角及求法;平面与平面平行的判定.【分析】(1)以A点为原点,分别以的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Axyz,求出相关点的坐标,设Q(1,x,0),则,利用PQ⊥QD,求出x=1.推出BE∥DQ,推出EF∥PD,EF∥平面PDQ,然后证明平面BEF∥平面PDQ.(2)求出平面BFQ是一个法向量,平面BEF的一个法向量,利用空间向量的数量积求解即可.【解答】解:(1)以A点为原点,分别以的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),D(0,a,0),P(0,0,1),设Q(1,x,0),则,,…若PQ⊥QD,则,即x2﹣ax+1=0,△=a2﹣4,∴△=0,a=2,x=1.…∴,又E是AD中点,∴E(0,1,0),,∴,∴BE∥DQ,又BE?平面PDQ,DQ?平面PDQ,∴BE∥平面PDQ,又F是PA中点,∴EF∥PD,∵EF?平面PDQ,PD?平面PDQ,∴EF∥平面PDQ,∵BE∩EF=E,BE,EF?平面PDQ,∴平面BEF∥平面PDQ.…(2)设平面BFQ是一个法向量,则,由(1)知,,∴,取z=2,得,同样求平面BEF的一个法向量,,∴二面角E﹣BF﹣Q的余弦值为.…22.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.参考答案:【考点】直线和圆的方程的应用;直线的一般式方程.【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;(3)当直线l的倾斜角为45°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论