版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市第四十三中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,问一开始输入的x=()A. B. C. D.参考答案:B【分析】执行如图所示的程序框图,逐次循环计算结果,结合判断条件,即可得到答案.【详解】由题意,执行如图所示的程序框图,第一次循环:计算,不满足判断条件;第二次循环:计算,不满足判断条件;第三次循环:计算,满足判断条件;因为输出的值为,则,解得,故选B.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.2.,且,则的形状为(
)A、等边三角形
B、等腰直角三角形
C、等腰或直角三角形
D、直角三角形参考答案:D3.下列命题中,真命题是(
)A.
B.C.的充要条件是=-1
D.且是的充分条件参考答案:D略4.数列的通项公式是,若前项和为,则项数的值为()A.
B.
C.
D.参考答案:A5.若函数的值域为,则其定义域A为
▲
.参考答案:[-2,1)函数的值域为,令,即,求得,所以的范围为,即定义域为.
6.圆的圆心坐标是(
)A
B
C
D
参考答案:A略7.已知函数f(x)的导函数为,对恒成立,则下列不等式中一定成立的是(
)A. B.C. D.参考答案:A【分析】构造函数,求导,由,得在上单调递增,再根据求解.【详解】令因为,且,所以在上单调递增,因为,所以.故选:A【点睛】本题主要考查导数与函数的单调性及其应用,还考查了构造函数的方法,属于中档题.8.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取最大值的正整数n是
(
)A、4或5
B、5或6
C、6或7
D、8或9参考答案:B9.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:A略10.下列命题中:①若p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件.②若p为:,则为:.③命题“”的否命题是“”.④命题“若则q”的逆否命题是“若p,则”.其中正确结论的个数是(
)A.1
B.2
C.3
D.4参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.下面算法的输出的结果是(1)
(2)
(3)
参考答案:(1)2006
(2)
9
(3)812.直线与椭圆总有公共点,则
。参考答案:
略13.下列命题中,正确命题的个数为
。(1)两个复数不能比较大小;(2),若,则;(3)若是纯虚数,则实数;(4)是虚数的一个充要条件是;(5)若是两个相等的实数,则是纯虚数。参考答案:014.甲乙丙丁四个人参加某项比赛,只有一人获奖,甲说:是乙或丙获奖,乙说:甲丙都未获奖,丙说:我获奖了,丁说:是乙获奖.已知四人中有且只有一人说了假话,则获奖的人为________.参考答案:乙【分析】本题首先可根据题意中的“四人中有且只有一人说了假话”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所说的话是否冲突,最后即可得出结果。【详解】若甲说了假话,则乙丙丁说的是真话,但是丙丁所说的话冲突,故不正确;若乙说了假话,则甲丙丁说的是真话,但是丙丁所说的话冲突,故不正确;若丙说了假话,则甲乙丁说的是真话且丙未获奖,由“是乙或丙获奖”、“甲丙都未获奖”、“丙未获奖”以及“是乙获奖”可知,获奖者是乙;若丁说了假话,则甲乙丙说的是真话,但是乙丙所说的话冲突,故不正确,综上所述,获奖者是乙。【点睛】本题是一个简单的合情推理题,能否根据“四人中有且只有一人说了假话”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题。15.已知圆C:x2+y2﹣2ax﹣2(a﹣1)y﹣1+2a=0(a≠1)对所有的a∈R且a≠1总存在直线l与圆C相切,则直线l的方程为
.参考答案:y=﹣x+1【考点】直线与圆的位置关系.【专题】综合题;方程思想;直线与圆.【分析】设出切线方程,利用圆心到直线的距离等于半径,比较系数得到方程组,求出恒与圆相切的直线的方程.【解答】解:圆的圆心坐标为(a,1﹣a),半径为:|a﹣1|显然,满足题意切线一定存在斜率,∴可设所求切线方程为:y=kx+b,即kx﹣y+b=0,则圆心到直线的距离应等于圆的半径,即=|a﹣1|恒成立,即2(1+k2)a2﹣4(1+k2)a+2(1+k2)=(1+k)2a2+2(b﹣1)(k+1)a+(b﹣1)2恒成立,比较系数得,解之得k=﹣1,b=1,所以所求的直线方程为y=﹣x+1.故答案为:y=﹣x+1.【点评】本题考查直线与圆的位置关系,考查圆系方程的应用,点到直线的距离公式的应用,考查计算能力.16.若向量、满足||=2,且与的夹角为,则在方向上的投影为
.参考答案:﹣【考点】平面向量数量积的运算.【分析】根据在方向上的投影为||与向量,夹角余弦值的乘积,即可求得答案【解答】解:根据向量数量积的几何意义知,在方向上的投影为||与向量,夹角余弦值的乘积,∴在方向上的投影为||?cos=2×(﹣)=﹣,∴在方向上的投影为﹣.故答案为:﹣.17.关于函数极值的说法正确的有________.①函数的极大值一定大于它的极小值;②导数为零的点不一定是函数的极值点;③若f(x)在区间(a,b)内有极值点,那么f(x)在区间(a,b)上一定不单调;④f(x)在区间[a,b]上的最大值,一定是f(x)在区间(a,b)上的极大值.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.参考答案:【考点】直线与平面垂直的性质;点、线、面间的距离计算.【分析】(I)取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE,证明PB⊥OE,OE∥CD,即可证明PB⊥CD;(II)取PD的中点F,连接OF,证明O到平面PCD的距离OF就是A到平面PCD的距离,即可求得点A到平面PCD的距离.【解答】(I)证明:取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE由△PAB和△PAD都是等边三角形知PA=PB=PD∴OA=OB=OD,即O为正方形ABED对角线的交点∴OE⊥BD,∴PB⊥OE∵O是BD的中点,E是BC的中点,∴OE∥CD∴PB⊥CD;(II)取PD的中点F,连接OF,则OF∥PB由(I)知PB⊥CD,∴OF⊥CD,∵,=∴△POD为等腰三角形,∴OF⊥PD∵PD∩CD=D,∴OF⊥平面PCD∵AE∥CD,CD?平面PCD,AE?平面PCD,∴AE∥平面PCD∴O到平面PCD的距离OF就是A到平面PCD的距离∵OF=∴点A到平面PCD的距离为1.19.已知函数f(x)=2sinxsin(x+).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,]时,求f(x)的值域.参考答案:【考点】GL:三角函数中的恒等变换应用;H1:三角函数的周期性及其求法.【分析】(1)运用两角和差公式和二倍角公式,化简整理,再由周期公式和正弦函数的单调增区间,即可得到;(2)由x的范围,可得2x﹣的范围,再由正弦函数的图象和性质,即可得到值域.【解答】解:(1)f(x)=2sinxsin(x+)=2sinx(sinx+cosx)=sin2x+sinxcosx=+sin2x=+sin(2x﹣)则函数f(x)的最小正周期T==π,由2k≤2kπ+,k∈Z,解得,kπ﹣≤x≤kπ+,k∈Z,则f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z;(2)当x∈[0,]时,2x﹣∈[﹣,],sin(2x﹣)∈[﹣,1],则f(x)的值域为[0,1+].20.已知单位正方形,点为中点.求直线与所成的角.参考答案:见解析.解:设直线与平面所成的角为,∵,,,,∴,,,设平面的一个法向量为,则,即,令,则,,∴,∴,∴,即直线与平面所成的角为.21.直线在两坐标轴上的截距相等,且到直线的距离为,求直线的方程.参考答案:解析:由题,若截距为0,则设所求的直线方程为.,.若截距不为0,则设所求直线方程为,,或,所求直线为,或.22.如图,正方体中.(Ⅰ)求与所成角的大小;(Ⅱ)求二面角的正切值.参考答案:解(Ⅰ)在正方体中,
--------------------1∴A1B1CD为平行四边形,∴,--------------------------------
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脚链市场发展前景分析及供需格局研究预测报告
- 垃圾焚化行业市场调研分析报告
- 含有电导体丝的玻璃产品供应链分析
- 电子防盗报警器项目运营指导方案
- 储热型取暖器产品供应链分析
- 药用石斛茎市场分析及投资价值研究报告
- 电动开窗器产品供应链分析
- 牛油杯细分市场深度研究报告
- 草垫机细分市场深度研究报告
- 花盆托架细分市场深度研究报告
- 第7章-建筑消防设施基础知识课件
- 应急抢险项目合同范本
- 2020版肝胆外科临床技术操作规范全集
- 人教2011版五年级美术下册《会亮的玩具》教案及教学反思
- 商业伦理与企业社会责任(山东财经大学)知到章节答案智慧树2023年
- 物理化学期末试卷(带答案)
- 框架结构柱梁及梁柱接头混凝土质量控制QC
- 甲亢肝损害包建东
- 部编版五年级上册语文《15太阳》优质公开课教学设计
- 关于副校长现实表现材料
- 市政污水管网深基坑拉森钢板桩支护专项施工方案
评论
0/150
提交评论