版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市营防中学高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量a=(m-2,m+3),b=(2m+1,m-2),且a与b的夹角大于900,则实数m的取值范围是(
)A.m>2或m<-
B.-<m<2C.m≠2
D.m≠2且m≠-参考答案:B2.已知是空间中两条不同直线,是两个不同平面,且,给出下列命题:①若,则;
②若,则;③若,则;
④若,则其中正确命题的个数是
(
)A.1
B.2
C.3
D.4参考答案:B3.在区间(﹣1,2)中任取一个数x,则使2x>3的概率为()A. B. C. D.参考答案:A【考点】几何概型.【分析】本题是几何概型的考查,只要利用区间长度的比即可求概率.【解答】解:由2x>3,解得:x>,故满足条件的概率是:p==,故选:A.【点评】本题考查了几何概型的概率求法,是一道基础题.4.设为两条不同的直线,为两个不同的平面,下列命题中为真命题的是(
)A.若,则
B.若,则
C.若,则;
D.若,则参考答案:D5.已知复数,是的共轭复数,则等于
A.16
B.4
C.1
D.参考答案:C6.若函数的图象如图所示,则一定有
参考答案:D7.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行参考答案:C8.设,若,则等于(
)
A.或
B.或
C.或
D.或或参考答案:B9.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是(
)A.B.
C.D.参考答案:A10.函数与函数的图象关于(
)A.轴对称
B.轴对称
C.直线对称
D.原点对称参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知=2,=3,=4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t=
.参考答案:41【考点】F3:类比推理.【分析】观察所给的等式,等号右边是,,…第n个应该是,左边的式子,写出结果.【解答】解:观察下列等式=2,=3,=4,…照此规律,第5个等式中:a=6,t=a2﹣1=35a+t=41.故答案为:41.【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.12.设是公差不为零的等差数列的前n项和,若成等比数列,则
.参考答案:13.快递小哥准备明天到周师傅家送周师傅网购的物品,已知周师傅明天12:00到17:00之间在家,可以接收该物品,除此之外,周师傅家里无人接收。如果快递小哥明天在14:00到18:00之间随机地选择一个时间将物品送到周师傅家去,那么快递小哥到周师傅家恰好能够送出该物品的概率是________.参考答案:【分析】先设快递小哥明天到达周师傅家的时刻为,根据题意得到,再结合周师傅在家的时间,可得到,进而可得出结果.【详解】设快递小哥明天到达周师傅家的时刻为,由题意可得,又快递小哥到周师傅家恰好能够送出该物品,必须满足,所以,快递小哥到周师傅家恰好能够送出该物品的概率是.故答案为【点睛】本题主要考查几何概型的应用,将问题转化为与长度有关的几何概型,即可求解,属于常考题型.14.已知函数的最小值为3,则a的值为
.参考答案:15.已知O为坐标原点,点M的坐标为(1,-1),点N(x,y)的坐标x,y满足则的概率为_________.参考答案:略16.在中,设角的对边分别为,已知,则
参考答案:17.若实数x,y满足,则的最大值是
.参考答案:0将化成,作出可行域和目标函数基准直线(如图所示),当直线向左上方平移时,直线在轴上的截距增大,即减少,由图象,得当直线过点时,取得最大值,联立,得,此时,;故填0.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)已知函数.(1)求函数的图像在处的切线方程;(2)设实数,求函数在上的最小值.参考答案:(Ⅰ)定义域为
又函数的在处的切线方程为:,即
(Ⅱ)得
,在上单调递增,在上单调递减.在上的最小值
当时,
当时,
19.(13分)、如图,已知椭圆=1(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.参考答案:(1)直线AB方程为:bx-ay-ab=0依题意解得
w.w∴椭圆方程是.(2)假若存在这样的k值,由得.∴①设,、,,则②而.要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则,即
∴③将②式代入③整理解得.经验证,,使①成立.综上可知,存在,使得以CD为直径的圆过点E.
20.(Ⅰ)已知a,b∈R+,求证:(a+b)(a2+b2)(a3+b3)≥8a3b3;(Ⅱ)已知a、b、c∈R+,且a+b+c=1.求证:.参考答案:【考点】不等式的证明.【专题】证明题;转化思想;综合法;不等式的解法及应用.【分析】(Ⅰ)运用基本不等式,累乘即可得证;(Ⅱ)由a、b、c∈R+,且a+b+c=1,将不等式的左边变形后,再由基本不等式,累乘即可得证.【解答】证明:(Ⅰ)a,b∈R+,a+b≥2,a2+b2≥2ab,a3+b3≥2,三式相乘可得,(a+b)(a2+b2)(a3+b3)≥8a3b3,当且仅当a=b取得等号;(Ⅱ)a、b、c∈R+,且a+b+c=1,可得﹣1=≥,﹣1=≥,﹣1=≥,相乘可得,??≥??=8,则有.【点评】本题考查不等式的证明,注意运用基本不等式和累乘法,属于中档题.21.如图1,在Rt△ABC中,∠C=90°,BC=6,AC=9,D,E分别为AC、AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的正弦值.参考答案:【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)推导出DE⊥AC,DE⊥A1D,DE⊥CD,从而DE⊥A1C.再由A1C⊥CD,能证明A1C⊥平面BCDE.(2)以C为原点,CB为x轴,CD为y轴,CA1为z轴,建立空间直角坐标系,由此能求出CM与平面A1BE所成角的正弦值.【解答】证明:(1)∵AC⊥BC,DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD,∴DE⊥平面A1DC.∴DE⊥A1C.又∵A1C⊥CD,∴A1C⊥平面BCDE.解:(2)以C为原点,CB为x轴,CD为y轴,CA1为z轴,建立空间直角坐标系,C(0,0,0),A1(0,0,3),D(0,3,0),M(0,,),B(6,0,0),E(4,3,0),=(0,),=(﹣6,0,3),=(﹣2,3,0),设平面A1BE的法向量=(x,y,z),则,取x=1,=(1,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《书籍设计》2022-2023学年第一学期期末试卷
- 音乐人的创作计划与演出安排
- 证券投资基金委托协议三篇
- 新余学院《中国古典舞训练》2022-2023学年第一学期期末试卷
- 西南交通大学《微机与接口技术实验》2021-2022学年第一学期期末试卷
- 西南交通大学《量子力学》2021-2022学年第一学期期末试卷
- 西南交通大学《电脑图文设计》2021-2022学年第一学期期末试卷
- 西京学院《设计表现技法》2022-2023学年第一学期期末试卷
- 2024年01月11069中央银行理论与实务期末试题答案
- 西北大学《计算机组成原理》2022-2023学年第一学期期末试卷
- 7750BRAS维护与配置(SR功能篇)
- 《投资理财》课件
- 矿井车辆安全培训课件
- 新生儿围手术护理
- 开酒店融资合同范例
- GB/T 18601-2024天然花岗石建筑板材
- 2024年企业年度规划
- 2024年全媒体运营师考试题库
- 锅炉使用单位锅炉安全日管控、周排查、月调度制度
- 《信息安全风险管理》课件
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
评论
0/150
提交评论