2022年河北省承德市通事营中学高二数学文测试题含解析_第1页
2022年河北省承德市通事营中学高二数学文测试题含解析_第2页
2022年河北省承德市通事营中学高二数学文测试题含解析_第3页
2022年河北省承德市通事营中学高二数学文测试题含解析_第4页
2022年河北省承德市通事营中学高二数学文测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年河北省承德市通事营中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“?x0∈R,使得x2﹣2x﹣3<0成立”的否定形式是()A.?x0∈R,使得x2﹣2x﹣3>0成立 B.?x0∈R,使得x2﹣2x﹣3≥0成立C.?x∈R,x2﹣2x﹣3<0恒成立 D.?x∈R,x2﹣2x﹣3≥0恒成立参考答案:D【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:命题是特称命题,则命题的否定是全称命题,即?x∈R,x2﹣2x﹣3≥0恒成立,故选:D2.在区间上随机地取一个实数,使得函数在区间上存在零点的概率是(A)

(B)

(C)

(D)参考答案:C3.如图,在三棱锥S﹣ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行 C.异面 D.以上都有可能参考答案:B【考点】空间中直线与直线之间的位置关系.【专题】证明题;空间位置关系与距离.【分析】根据三角形的重心定理,可得SG1=SM且SG2=SN,因此△SMN中,由比例线段证出G1G2∥MN.在△ABC中利用中位线定理证出MN∥BC,可得直线G1G2与BC的位置关系是平行.【解答】解:∵△SAB中,G1为的重心,∴点G1在△SAB中线SM上,且满足SG1=SM同理可得:△SAC中,点G2在中线SN上,且满足SG2=SN∴△SMN中,,可得G1G2∥MN∵MN是△ABC的中位线,∴MN∥BC因此可得G1G2∥BC,即直线G1G2与BC的位置关系是平行故选:B【点评】本题给出三棱锥两个侧面的重心的连线,判定它与底面相对棱的位置关系,着重考查了三角形重心的性质、比例线段的性质和三角形中位线定理等知识,属于基础题.4.数列{an}满足an+1=,若a1=,则a2015=()A. B. C. D.参考答案:B【考点】数列递推式.【分析】求出数列的前几项,推出数列是周期数列,然后化简求解即可.【解答】解:a1=,代入到递推式中得a2=,同理可得a3=,a4=,a5=;因此{an}为一个周期为4的一个数列.∴a2015=a4×503+3=a3=.故选:B.5.如图所示,已知正四棱锥侧棱长为,底面边长为,是的中点,则异面直线与所成角的大小为(

)A.90°

B.60°

C.45°

D.30°参考答案:B略6.观测两个相关变量,得到如下数据:x-1-2-3-4-554321y-0.9-2-3.1-3.9-5.154.12.92.10.9则两变量之间的线性回归方程为A.

B.

C.

D.参考答案:B略7.若正方形ABCD的边长为1,则?等于()A. B.1 C. D.2参考答案:B【考点】平面向量数量积的运算.【分析】直接利用向量的数量积求解即可.【解答】解:正方形ABCD的边长为1,则?=||?||cos<,>==1.故选:B.8.程序:M=1

M=M+1

M=M+2

PRINTM

END

M的最后输出值为(

)A.1

B.2

C.

3

D.4参考答案:D9.已知椭圆的两个焦点是F1,F2,E是直线y=x+2与椭圆的一个公共点,当|EF1|+|EF2|取得最小值时椭圆的离心率为()A. B. C. D.参考答案:D【考点】K4:椭圆的简单性质.【分析】由题意得(m+2)x2+4(m+1)x+3(m+1)=0.由△≥0,得m≥2.|EF1|+|EF2|取得最小值,求出m.由此能求出椭圆离心率.【解答】解:由题意,m>0知m+1>1,由得(m+2)x2+4(m+1)x+3(m+1)=0.由△=16(m+1)2﹣12(m+2)(m+1)=4(m+1)(m﹣2)≥0,解得m≥2,或m≤﹣1(舍去)∴m≥2,当且仅当m=2时,|EF1|+|EF2|取得最小值:2.此时a=,c=,e=.故选:D.10.已知,则函数的图像必定不经过(

)A、第一象限

B、第二象限

C、第三象限

D、第四象限参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________参考答案:12.已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是A,B,C,D,E这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).参考答案:45【分析】通过分步乘法原理即可得到答案.【详解】对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有个不同的编号.【点睛】本题主要考查分步乘法原理的相关计算,难度很小.13.已知双曲线的两条渐近线的夹角为60°,则其离心率为

.参考答案:2或【考点】双曲线的简单性质.【专题】计算题.【分析】先由双曲线的两条渐近线的夹角为60°,得双曲线的两条渐近线的斜率±或,由于不知双曲线的焦点位置,故通过讨论分别计算离心率,由或,再由双曲线中c2=a2+b2,求其离心率即可【解答】解:∵双曲线的两条渐近线的夹角为60°,且渐近线关于x、y轴对称,若夹角在x轴上,则双曲线的两条渐近线的倾斜角为30°,150°,斜率为若夹角在y轴上,则双曲线的两条渐近线的倾斜角为60°,120°,斜率为①若双曲线的焦点在x轴上,则或∵c2=a2+b2∴或

∴或e2﹣1=3∴e=或e=2②若双曲线的焦点在y轴上,则或∵c2=a2+b2∴或

∴或e2﹣1=3∴e=或e=2综上所述,离心率为2或

故答案为2或【点评】本题考查了双曲线的几何性质,由渐近线的斜率推导双曲线的离心率是解决本题的关键14.已知圆C:x2+(y﹣2)2=1,P是x轴正半轴上的一个动点,若PA,PB分别切圆C于A,B两点,若|AB|=,则直线CP的方程为.参考答案:2x+y﹣2=0【考点】直线与圆的位置关系.【分析】如图所示,由切线长定理得到Q为线段AB中点,在直角三角形ACQ中,利用勾股定理求出|CQ|的长,再利用相似求出|CP|的长,设P(p,0),利用勾股定理求出p的值,即可确定出直线CP方程.【解答】解:如图所示,|AC|=r=1,|AQ|=|AB|=,在Rt△ACQ中,根据勾股定理得:|CQ|=,∵△ACQ∽△PCA,∴=,即|CP|=3,设P(p,0)(p>0),即|OP|=p,在Rt△OPC中,根据勾股定理得:9=4+p2,解得:p=,即P(,0),则直线CP解析式为y=(x﹣),即2x+y﹣2=0,故答案为:2x+y﹣2=0【点评】此题考查了直线与圆的位置关系,涉及的知识有:切线长定理,切线性质,勾股定理,相似三角形的判定与性质,以及直线的两点式方程,熟练掌握性质及定理是解本题的关键.15.

如图,是一程序框图,则输出结果为________.参考答案:16.在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC,则异面直线PC与AB所成角的大小是

.参考答案:60°

17.若正三棱柱的所有棱长均为,且其体积为,则

.参考答案:4三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)求经过直线的交点且平行于直线的直线方程

参考答案:且直线的斜率k=-2,

----------8分故所求直线为----------10分即26x+13y-29=0----------12分19.已知函数f(x)=(x+a)2+lnx.(1)当a=时,求函数f(x)在[1,+∞)上的最小值;(2)若函数f(x)在[2,+∞)上递增,求实数a的取值范围;(3)若函数f(x)有两个极值点x1、x2,且x1∈(0,),证明:f(x1)﹣f(x2)>﹣ln2.参考答案:解:(1)当时,函数,则………………2分∴在上递增,………4分(2),………………5分∵在上递增,∴在上恒成立,∴在上恒成立,即,而,在上递减,当时,,∴…………………………8分(3)的定义域为,∵函数有两个极值点、,∴、是方程的两根,∴,,且,,………10分∴……………12分令)∴在上单调递减,∴……14分略20.如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)由题意将点P(1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根与系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB的方程为,由此方程求得M的坐标,再与椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值【解答】解:(1)椭圆C:经过点P(1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=kAF=kBF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA的斜率k1=,直线PB的斜率为k2=所以k1+k2=+=2×=2k3,故存在常数λ=2符合题意21.已知函数(为自然对数的底数)(1)求函数在处的切线方程;(2)求函数的单调区间。参考答案:解:……3分(1)……7分(2)令解得令,解得故的递增区间是……12分22.已知函数f(x)=ax3﹣+1(x∈R),其中a>0.(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间[﹣]上,f(x)>0恒成立,求a的取值范围.参考答案:【考点】函数恒成立问题;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)把a=1代入到f(x)中得到切点的坐标,利用导数求出直线切线,即可求出切线方程;(Ⅱ)求出f′(x)=0时x的值,分0<a≤2和a>2两种情况讨论函数的增减性分别得到f(﹣)和f()及f(﹣)和f()都大于0,联立求出a的解集的并集即可.【解答】(Ⅰ)解:当a=1时,f(x)=,∴f(2)=3;∵f′(x)=3x2﹣3x,∴f′(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y﹣3=6(x﹣2),即y=6x﹣9;(Ⅱ)解:f′(x)=3ax2﹣3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论