版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PDHonlineCourseE320(4PDH)
EnergyStorageTechnology
Instructor:LeeLayton,PE
2020
PDHOnline|PDHCenter
5272MeadowEstatesDriveFairfax,VA22030-6658
Phone:703-988-0088
www.PDH
AnApprovedContinuingEducationProvider
www.PDH
PDHonlineCourseE320
www.PDH
©LeeLayton.
Page
PAGE
10
of
NUMPAGES
45
EnergyStorageTechnology
TableofContents
Section Page
Introduction:BottlingElectricity 3
Chapter1–EnergyStorageApplications 9
Chapter2–BatteryEnergyStorage 20
Chapter3–Non-ElectrochemicalStorage 36
Chapter4–Plug-inHybridElectricVehicles 43
Summary 45
Introduction:“BottlingElectricity”
Electricityisoneofthemajorcommoditiesinoureconomyanditisoneofthefewcommoditiesthatneverhadaneconomicalorpracticalmethodtostoretheproduct.
Electricpowerisproducedanddeliveredatvirtuallytheinstantitisdemanded.
Generationandtransmissionsystemsmustbedesignedtomeetthepeakinstantaneous
demandthatmayoccuronthesystem.Consideringalittleextracapacityforreliability,thishasresultedinamodelwherethecapacityfactoroftheentiresystemislessthan50%.Althoughitisdifficulttostoreelectricitydirectly,electricenergycanbestoredinotherforms,suchaspotential,chemical,orkineticenergy.Advancedenergystoragetechnologiesbasedontheseprinciplesareemergingasapotentialresourceinsupportinganefficientelectricitymarket.Thetermenergystoragerefersspecificallytothecapabilityofstoringenergythathasalreadybeengeneratedaselectricityandcontrollablyreleasingitforuseatanothertime.
Onlyabout2.5%ofthetotalelectricpowerdeliveredintheUnitedStatespassesthroughenergystorage,almostallofwhichispumpedhydroelectricstorage.Therestructuringoftheelectricityindustry,alongwithincreasedrequirementsforpowerreliabilityandquality,hasmadeutility-scaleenergystorageasubjectofcurrentinterest.
Althoughthepresent-dayelectricgridoperateseffectivelywithoutstorage,cost-effectivewaysofstoringelectricalenergycanhelpmakethegridmoreefficientandreliable.Electricenergystorage(EES)canbeusedtoaccumulateexcesselectricitygeneratedatoff-peakhoursanddischargeitatpeakhours.Thisapplicationcouldyieldsignificantbenefitsincludingareducedneedforpeakgenerationandreducedstrainontransmissionanddistributionnetworks.energystoragecanalsoprovidecriticallyimportantancillaryservicessuchasgridfrequencyregulation,voltagesupport,andoperatingreserves,therebyenhancinggridstabilityandreliability.
Technicalapplicationsofenergystorageincludegridstabilization,gridoperationalsupport,powerqualityandreliability,loadshifting,andcompensatingforthevariabilityofrenewableenergysources.Restructuredelectricitymarketsprovideopportunitiesforenergystoragetoparticipateinenergyarbitrageandancillaryservices.
Thefirstapplicationoflarge-scaleenergystorageintheUnitedStatesoccurredin1929,whenthefirstpumpedhydroelectricpowerplantwasplacedintoservice.Pumpingwaterfromalowerelevationtoahigherelevationwasthemostpracticalwaytostorelargeamountsofenergythatcouldthenbereleasedduringperiodsofhigh,orpeak,demand.Thesepowerplantsarestillused
tohelpmanagegridfrequencyandprovidecleanreservegeneration,knownasancillaryservices.Duringa30-yearperiodfromthelate1950stothelate1980s,approximately19,500MWofpumpedhydroelectricstoragefacilitieswerebroughtintoserviceintheUnitedStates.By2000,about3%ofthetotalpowerdeliveredbythenation’sgridwassuppliedthroughtheseenergystoragefacilities.Becauseoftheneedforsignificantelevationchangesinpumpedhydroelectricplantdesigns,thenumberofenvironmentallyacceptablesitesforfuturepumpedhydroelectricfacilitiesislimited.Thesitingofnewplantswillfacethesameobjectionsthatthesitingofnewtransmissionlinesfacestoday.
Anotherenergystoragetechnologyiscompressedairenergystorage(CAES).ACAESdemonstrationpowerplantwasplacedinserviceintheearly1990sandhasproventobeeffective.Undergroundformations,suchassaltdomesanddepletedgasfields,canbeadaptedforusewithCAEStechnology.Thesesystemsappeartobepracticalinapowerrangefromabove100MWuptoseveralthousandMW.
Themostcommonformofenergystorageinusetodayisbasedonbatteries.TheisalargeinstalledbaseofleadacidbatteriesinUPSsystem.TherapidgrowthoftheinformationagehasspawnedtheconstructionofdatacenterstosupporttheInternetandcommunicationscenters.
Thesefacilitiesaresensitivetopowersupplydisruptions,solargebattery-poweredprotectionsystemshavebeenandwillcontinuetobedeployedtoachieveahighlevelofprotection.
Poweringthesetypesofloadscurrentlyaccountsforover1.5%ofthetotalutilitypowerconsumptionintheUnitedStates.
Thereareseveralotherelectrochemicaltechnologiesinuseforelectricbackuppowerapplications.Thesebatterytechnologiesarealsobeinginvestigatedordeployedforutility-scaleapplications.Batterytechnologiesincludelithiumion,sodiumsulfur,zinc-bromine,vanadiumredox,andpolysulfide-bromideredoxflowbatteries,amongothers.
Thetwomainclassesofbatteriesinthisdistributedenergystoragecategoryareflowbatteriesandhigh-temperaturebatteriessuchassodiumsulfurandsodiumnickelchloridebatteries.
Industryexpertshavefoundthat,unlikelead-acidbatteries,thesedevicescancycledailyandhaveusefuloperatinglivesintherangeof10to20years.Thesesystemscanbedesignedforcharge/dischargedurationsuptoeighthoursperday.Allthesedevicesarescaledchemistrieswithnoemissionsandquietoperation.
Flowbatterytechnologyutilizesanactiveelementinaliquidelectrolytethatispumpedthroughamembranelikeafuelcelltoproduceanelectricalcurrent.Thesystem’spowerratingisdeterminedbythesizeandnumberofmembranes,andtheruntime(hours)isbasedonthegallonsofelectrolytepumpedthroughthemembranes.Pumpinginonedirectionproducespowerfromthebattery,andreversingtheflowchargesthesystem.
High-temperaturebatteriesoperateabove250Candutilizemoltenmaterialstoserveasthepositiveandnegativeelementsofthebattery.Thesechemistriesproducebatterysystemswithveryhigh-powerdensitiesthatservewellforstoringlargeamountsofenergy.TheSodium-Sulfurbattery,suchastheunitshownontheright,iscurrentlybeingdeployedintheUnitedStatesbyseverallargeutilitiesindemonstrationprojects.
Otherenergystoragedevicessuchasflywheelsandsupercapacitorsarebeingappliedforpowerqualityapplicationsandfrequencyregulationforutilitiesandotherload-balancingusestoreduceemissionsfromdieselgenerator-powereddevicessuchasportcranes.Forthesesystems,energystorageismeasuredinminutes.
OneenergystoragetechnologythatmaybethefutureofutilityenergystorageisPlug-inHybridElectricVehicles(PHEVs).Theacceptanceofthesevehiclesandtheensuingrateofadoptionbythepublicwilldeterminethetimingoftheirimpactontheoverallpowerdemandoftheutilitygrid.AssumingmostchargingofPHEVsoccursatnight,therelativeimpactonthegridovertimeshouldbepositiveinconjunctionwiththeanticipatedsignificantgrowthofwindenergy.
UncontrolleddaytimeorearlyeveningchargingbyPHEVs,bycontrast,couldposechallengestosystemeconomicsandcapacity,astheextrademandcouldincreasecongestionorpeakuse.
Therearemanybenefitstodeployingenergystoragetechnologiesintothenation’sgrid.Energystoragecanprovide:
Ameanstoimprovegridoptimizationforbulkpowerproduction.
Awaytofacilitatepowersystembalancinginsystemsthathavevariableordiurnalrenewableenergysources.
Facilitationofintegrationofplug-inhybridelectricvehicle(PHEV)powerdemandswiththegrid.
Awaytodeferinvestmentsintransmissionanddistribution(T&D)infrastructuretomeetpeakloadsforatime.
Aresourceprovidingancillaryservicesdirectlytogrid/marketoperators.
Dependingupontheprincipalapplicationoftheenergystoragetechnology,energystoragemaybeviewedasageneration,transmission,distribution,orend-userresource.
PumpedhydroelectricandCAEStechnologiesareconsideredbulkpowerenergystoragesystems.Incontrast,newclassesofbatterieshavebeendevelopedthatareconsideredsuitableforsmallerapplicationsandarereferredtoas“distributed”utilitystoragesystems.(Inthiscontext,theterm“distributed”isusedasadifferentiationfrom“largecentralized”energystoragetechnologies,analogoustolarge-centralizedpowerplants.)Thetermdistributedenergystoragemeansdeploymentofthesedevicesclosetoloadcenters,transmissionsystempointsofreinforcement,orrenewablegenerationsources,typicallyinornearutilitysubstations.Inothercontexts,theterm“distributed”denoteslocationondistributionfeedercircuitsoratconsumerpremisesbehindthemeter.
Islanding:Continuingtopoweraportionofagridindependentlyfromtheutilitysource.
Fullintegrationofnewsourcesofenergydemandcoupledwiththeoverallincreaseinelectricityuseisamajorchallengefacingthedesignersoftheelectricgridofthefuture.Energystoragetechnologiesneedtobeexaminedcloselytounderstandwherestoragecanaddvaluetotheoverallelectricityinfrastructure.Examplesofthevalueofenergy
storagetechnologiescouldincludecapitaldeferral,energymaintenanceduringislanding,andbetterutilizationofgenerationincoordinationwiththevariableoutputnatureofrenewableenergygeneration.
Theratioofstorageenergycapacitytocharge/dischargepowerrating,orthedurationoftheenergystoragethatisrequired,variesdependingupontheapplicationandfavorsdifferenttechnologiesaccordingly.Energydensity,cost,efficiencies,andenvironmentalconcernsareadditionalfactorsthataffecttheapplicabilityofdifferenttechnologiestodifferentpurposes.TheelectricvehicleapplicationdrivesmostR&Dforadvancedmaterialstoday,butitshouldbenotedthatitisalsothemostdemandingapplicationandthustheonethatjustifieshighercosts.Inthelongterm,thebestenergystoragetechnologiesforutility-scaleapplicationsmaybedifferentfromthoseusedforelectric-drivevehicles.
Determiningtheamountandoverallvalueofenergystoragethatshouldbeaddedtothegridbeginswithanexaminationofthemarginalcostofgeneratingelectricity.Theelectricpowerindustryrunsatlowcapacityfactors.Thislevelofcapacityhasbeenacceptabletotheindustrybecausegenerationresourceshavetraditionallybeenmorecost-effectivesourcesofcapacitythanenergystorageresources.Thegrowthofrenewableenergywilllikelyleadtoevenlowercapacityfactorsfortraditionalgenerationsources.
ManyofthedriversforaSmartgridarebasedonadesiretoimprovecapacityfactorsbyshiftingthedemandcurvethrougheitherincentivesorcontrols.Beyondsomepointthatremainstobedetermined,thereislikelytobesomepublicresistancetothedegreeofloadshiftingentailedinthedeploymentofdemandresponseprograms.Energystoragetechnologyoffersanotherpathtohelpbalancethesystemtoadaptproductiontodemandwhileimprovingcapacityfactors.
Anotherpositiveaspectoftheimplementationofenergystoragetechnologiesisthepotentialtocaptureandstoreelectricityfromwindenergywhenthereisalackoftransmissioninfrastructure.Forexample,windcurtailmenthasalreadybecomecommoninTexasbecauseofalackoftransmissioncapacitytomovethatpowerfromwesternTexastoloadcentersinotherpartsofthestate.Inmanyregions,includingTexas,transmissionprojectsaremovingforwardtobetterconnectwindpowerplantswithloadcenters,althoughenergystoragetechnologiesmayhavepotentialvalueintheinterim.Inaddition,aswindpowerdeploymentincreases,windoutputmaybegintoexceedelectricitydemandduringcertaintimesoftheyear,whichwouldnecessitatecurtailment.Thisproblemmayalsobeaggravatedbyinflexiblenuclearandcoalpowerplantsthathavelimitedabilitytodecreasetheiroutput,giventhedifficultyofpoweringuporpoweringdowntheselargebaseloadfacilities.
Windisagrowingcontributorofenergy,butonlyasmall,insignificantcontributortoelectricalgeneratingcapacity.Windpower’sintermittency—whichresultsingenerationthatisnotdispatchable—iswelldocumented.Theoutputofawindfarmcanvaryfromzerotothefullratedoutputofthefacility.Thisisanissueevenwithlargewindfarms,whichhavesomeself-compensatingabilitybecausetheyaregeographicallydispersed.Formodernwindturbinefarms,theyearlyaveragecapacityfactor—theportionoftimetheyproducefulloutput—isaround40%.Asthepercentagecontributionofwindgrows,sodoesitseffectonthegrid,creatingproblemsoffrequencystabilizationandsystemreliability.Energystorageoptionscouldbeemployedtosupplementorcompensateforthevariabilityofthewindpower’soutput.
Muchlikewindenergy,photovoltaicenergyisalsoanintermittentsourceofelectricity.Theoutputfromasolararraywillvarywiththelocation,weatherconditions,andtimeofday.Italsovariesthroughouttheday,increasingfrommorningtomiddayanddroppingoffintheafternoon.Inmanycases,photovoltaicenergyproductiondoesnotcoincidentwithlateafternoonsummerpeakdemandsthatmostutilitiesexperience.Thereisalsotheintermittencycausedbypassingcloudcover,whichcanmomentarilyreduceaphotovoltaicarray’soutputtovirtuallyzero.
Energystoragecansmooththeoutputofphotovoltaicsbyfillingtheshoulderperiod—theafternoondrop-offofpowerfromthesun.Itcanalsobuffertheeffectofmomentarypowerlossduetopassingcloudcover.BecausetheoutputfromasolararrayisDC,itdoesnotrequiretheACtoDCconversionthatwindenergyneeds.ThisallowsdirectconnectionofthebatterytothesolarDCbusthroughelectronics,butwithoutAC/DCconversion.Thecapitalcostshouldthereforebelessandtheefficiencyhigherthanthoseofwindpowerconversionequipment.
Inanalyzingenergystoragealternatives,Figure1showsthecurrentcostestimatesforvarioustypesofenergystoragetechnologiesavailabletoday.ExceptforCAES,allotherformsofenergystoragehavenoemissionsassociatedwiththeenergydischargecycle.CAESsystemsburnamixtureofcompressedairandnaturalgastogeneratepower.CAEStechnologyrequiresfuelcostsfordischarging,whicharenotcapturedinFigure1.Ifthesystemoperatedoncompressedairalone,thecostsperkilowatt(kW)wouldbeapproximatelythreetimesgreater.
Figure1
CostEstimatesforselectESSTechnologies
3500
3000
2500
2000
1500
1000
500
0
CAES
Li-Ion
Flywheel
PSH
FlowBattery
NaS
Energystoragetechnologytypescanbedividedintotwocategoriesbasedontheireconomicallypracticalduration:thosewithhoursofruntime,andthosewithminutesofruntime.Currently,flywheelsandbatteriesratedforsmalleramountsofenergyareappearinginthegridtodayforancillaryserviceusesuchasfrequencyregulation.Allotherenergystoragetechnologiescanprovidehoursofenergyruntimeinadditiontouseinancillaryservicessuchasfrequencyregulation.
Chapter1
EnergyStorageApplications
Inthischapterwewilllookattheapplicationsofelectricenergystoragesystemstotheutilitygrid.Wewilllookatthebenefitstothethreesectorsontheutilityindustrywhichare,
Generation
Transmission&Distribution
End-Users
Electricityhastraditionallybeenusedatthetimeatwhichitisgenerated.Itisnotoftenstored,eventhoughenergystoragewouldallowfortheoptimizationofpowergeneration.Currently,theUnitedStateshasadaptedgenerationtomatchpeakload,resultinginlowcapacityfactorsfortheelectricpowerindustry,asmuchofthecapacityisusedinfrequentlytomeetpeakdemand.Theshiftingenerationresourcesfromfossilfuelstorenewableenergyresourcesasasourceofelectricpowerwillaggravatethislowcapacityfactorbecausewindpowerisoftenstrongestattimeswhenelectricdemandislow.Whenusedtolevelizetheproduction/demandmismatchovervarioustimedomains,energystoragetechnologieshaveseveralgenerationapplications.Inaddition,storagealsohastransmissionapplicationsthatimprovetransmissioncapacityandreliability.
Energystorageapplicationsmayofferpotentialbenefitstothetransmissionanddistribution(T&D)systembecauseoftheabilityofmodernpowerelectronics,andsomeelectro-chemistries,tochangefromfulldischargetofullcharge,orviceversa,extremelyrapidly.Thesecharacteristicsenableenergystoragetobeconsideredasameansofimprovingtransmissiongridreliabilityorincreasingeffectivetransmissioncapacity.Atthedistributionlevel,energystoragecanbeusedinsubstationapplicationstoimprovesystempowerfactorsandeconomicsandcanalsobeusedasareliabilityenhancementtoolandawaytodefercapitalexpansionbyaccommodatingpeakloadconditions.
Energystoragecanalsobeusedtoalleviatediurnalorothercongestionpatternsand,ineffect,storeenergyuntilthetransmissionsystemabletodelivertheenergytothelocationwhereitisneeded.
Oneareainwhichenergystoragetechnologiescouldprovidegreatbenefitsisinconjunctionwithrenewableenergyresources.Bystoringenergyfromvariableresourcessuchaswindandsolarpower,energystoragecouldprovidefirmgenerationfromtheseunits,allowtheenergyproducedtobeusedmoreefficiently,andprovideancillarytransmissionbenefits.
Attheend-uselevel,energystoragetechnologiescanbeusedtocapturedistributedrenewablegeneration—photovoltaicsolarorwindpower—andstoreituntilitisneeded,bothforoff-gridandgrid-connectedapplications.Assuch,end-userenergystoragetechnologyapplicationsalsohavethepotentialbenefitofimprovinggridutilization,especiallyifend-userenergystoragecanbecoordinatedwithutilityoperations.Oneexampleofsuchcoordinationistheuseofenergystorageinlargecommercialbuildingstoallowpeakshavinganddemandresponsetooccurwithoutreducingactualbuildingservicesandheating,ventilation,andairconditioning(HVAC).
Apotentialbenefitofanend-userenergystoragetechnologyisvehicle-to-grid(V2G)technology,wherebyplug-inhybridelectricvehicles(PHEVs),withtheaddedcapabilityofdischargingbacktothegrid,areusedtoimprovegridutilization,levelizedemand,andimprovereliability.BecauseexpectationsforPHEVdeploymentaresohigh,thereisgreatinterestintheelectricpowerutilityindustryaboutthepotentialforV2Gtoprovidemanyofthebenefitsofenergystorageatthedistributionandend-userlevel.
Therearealsohigh-valuebenefitstonicheenergystorageapplicationsassociatedwithspecificend-usesectors.Specificindustrialapplicationswillbedevelopedasmegawatt-scaleenergystoragetechnologybecomesprovenandeconomicandthatwillprovideaddedbenefitsofenergystoragetechnologies.
GenerationApplications
Thefollowingisasummaryofafewofthekeyareaswhereelectricenergystoragesystemsmaybenefittheelectricutilitygridfromthegeneratortotheend-user.
Energystoragecanhelpwithgridstabilizationbyassistingwiththegrid’sreturntoitsnormaloperationafteradisturbance.Energystoragecanbeusedtoremedythreeformsofinstability:rotorangleinstability;voltageinstability;andfrequencyexcursions.
Inadditiontostabilizingthegridafterdisturbances,energystoragecanalsobeusedtosupportnormaloperationsofthegrid.Fourtypesofsupportoperationscanbeperformedwithenergystorage,
FrequencyRegulationServices:Energystoragecanbeusedtoinjectandabsorbpowertomaintaingridfrequencyinthefaceoffluctuationsingenerationandload.
ContingencyReserves:Atthetransmissionlevel,contingencyreserveincludesspinning(orsynchronous)andsupplemental(non-synchronous)reserveunits,thatprovidepowerforuptotwohoursinresponsetoasuddenlossofgenerationoratransmissionoutage.
VoltageSupport:Voltagesupportinvolvestheinjectionorabsorptionofreactivepower(VARs)intothegridtomaintainsystemvoltagewithintheoptimalrange.Energystoragesystemsusepower-conditioningelectronicstoconvertthepoweroutputofthestoragetechnologytotheappropriatevoltageandfrequencyforthegrid.
BlackStart:Blackstartunitsprovidetheabilitytostartupfromashutdownconditionwithoutsupportfromthegrid,andthenenergizethegridtoallowotherunitstostartup.Aproperlysizedenergystoragesystemcanprovideblackstartcapabilities,provideditiscloseenoughtoagenerator.
Energystoragecanalsohelptoimprovepowerqualityandreliability.Mostgrid-relatedpowerqualityeventsarevoltagesagsandinterruptionswithdurationsoflessthantwoseconds,phenomenathatlendthemselvestoenergystorage-basedsolutions.
Loadshiftingisanotherareawhereenergystorageisutilizedduringperiodsoflowdemandandreleasingthestoredenergyduringperiodsofhighdemand.Loadsiftingcomesinseveraldifferentforms;themostcommonispeakshaving.Peakshavingdescribestheuseofenergystoragetoreducepeakdemandinanarea.Itisusuallyproposedwhenthepeakdemandforasystemismuchhigherthantheaverageload,andwhenthepeakdemandoccursrelativelyrarely.Peakshavingallowsautilitytodefertheinvestmentrequiredtoupgradethecapacityofthenetwork.Theeconomicviabilityofenergystorageforpeakshavingdependsonseveralfactors,particularlytherateofloadgrowth.
Thissectionfurtherdiscussesthepotentialbenefitsofenergystorageacrossdifferentinfrastructureandtimedomainsandgivessomeindicationsoftheperformancecharacteristicsrequiredbyeachapplicationandtheestimatedeconomicgains.Table1summarizesgenerationapplicationsandtheirbenefits.
Manyofthegenerationservicesthatarepotentialenergystorageapplicationsareexistingenergymarket-definedproducts(e.g.,ancillaryservicesandbalancingenergy),andassuch,marketcostsfortheseservicesarereadilyavailable.Wheremarketsarenotderegulated,theamountofenergystoragecapacitythatcouldbeusedisroughlylinkedtosystemorgeneratorsizes.Inmostcases,theoveralleconomicbenefitscanbeusedtofinanceenergystoragetechnologyprojectsvianormalmarketmechanisms.
Whenbenefitsaredescribedasalleviatingconventionalgenerationcapacitytoprovideenergy,itisbecausetheprovisionofanancillaryservicerequiresthatthegeneratoroperateatlessthanfullcapacity.Thus,theownerofthatgeneratorincursanopportunitycostinthatthemarginsonproductionaredecreased;thiscostisalargepartofthepricingdemandedforancillaryprovision,especiallyatpeakload.Insomecases,generatingunitsthatarenot“inthemarket”andwouldbeuneconomicalareusedtoprovideancillaryservices,generallyathigherprices.
Replacingtheseunitswithenergystoragetechnologieswouldreducethesecostsandtheassociatedemissionsfromtheseunits,potentiallyenablingtheretirementofolderpowerplants.
Someoftheapplicationsarealreadyunderearlycommercialdevelopment;severalmerchantenergystoragedevelopersarepilotingfastenergystoragetechnologiesforuseinsystemregulation.Inaddition,somewinddevelopersthatexperiencecurtailmentduetoinsufficienttransmissioncapacitiesareinvestigatingenergystoragesolutions.
TransmissionandDistributionApplications
Transmissioncapacitytobringremotegenerationtoloadcentersiscurrentlylimited,althoughnewtransmissioninfrastructureisbeingplannedandbuiltinmanyareas.Increasingly,newgenerationmustbesitedfarfrompopulationcenters,whichcanplaceadditionalstrainonthegrid.Windpowergenerationisoftenlocatedinremoteorrurallocations,whichrequirestheinstallationofnewtransmission.Becausewindresourcestypicallyhavecapacityfactorsofaround40%,itisoftenthecasethatassociatednewtransmissionratedatthefullpowercapacityoftherenewableresourceisnoteconomical.
Forsomewindpowerprojects,itmaybecost-effectivetoeither,buildtransmissioncapacityforslightlylessthanthefullnameplatecapacityoftheprojectandsimplycurtailoutputduringthesmallnumberofhoursperyearwhenoutputexceedstheavailabletransmissioncapacity,ortoaddenergystoragetoenablethedispatchoftheenergyatadifferenttime.
Energystoragetechnologiesmayprovideawaytocapturepowerproductionthatwouldotherwisebecurtailedandreserveitforatimewhenthetransmissiongridisnotloadedtocapacity.Energystoragealsoaffordsthetransmissionowner/gridoperatorachancetodefer
transmissionexpansionforaperiod;transmissioncapacityisgenerallynotincrementallyincreased.Thisabilitytodefertransmissionexpansionisanexampleofenergystorageprovidingmutualbenefitstogenerationandtransmission.However,thecostsofenergystorageoptionsneedtobecomparedtootheroptions,includingtheconstructionofnewtransmissioninfrastructure,thatbenefitallgeneratorsaswellasconsumersviaenhancedreliabilityandloweroverallcosts.
Transmissioncongestionisalreadyanissueinmanypartsofthecountry.Congestionchargesaretypicallyconsideredaspartoffuelcostadjustmentsbymostregulatedload-servingentitiesandcanbetenstohundredsofmillionsofdollarseachmonth.Theimpactofcongestionistoforcetheuseofexpensivegenerationresourcesclosertotheloadcenterinsteadoflessexpensivecoalandhydroelectricresources,whichcanbeusedinremotelocations.Therefore,large-scaleenergystorageisanotherwaytomitigatetransmissioncongestioniftheeconomicsareviable.
Aspecialcaseofcongestionreliefoccurswhenthelimitingtransfercapacitiesarenotthephysicalcapacitiesofthetransmissionpathsinquestion,butratherarereliabilitylimitsarisingfrompost-contingencyloadingorstabilityconditions.InthewesternUnitedStates,systemdynamicandtransientstabilitylimitsimposerestrictionsonthenort
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司搬家合同协议书范本2篇
- 2024年度钢管出口贸易与运输承包合同2篇
- 废旧物品购销合同版
- 2024年度版权继承合同
- 企业合伙人合作的协议书范本
- 二零二四年度建筑工程施工合同违约金计算方式3篇
- 班主任的团队建设与管理技巧计划
- 2024年污水处理工培训教材全解读
- 学期成绩分析与反馈计划
- 家庭住宅装修合同三篇
- GB/T 16453.4-2008水土保持综合治理技术规范小型蓄排引水工程
- 年报审计资料清单
- 《老人与海》读书分享会课件(共20张ppt)
- 医院危险品安全管理制度(5篇)
- 兽用疫苗生产-课件
- 保修阶段监理方案
- 农产品物流管理教材 课件
- 库房日常清洁卫生记录表
- DB37-T 4085-2020 商务楼宇安全隐患排查治理体系实施指南
- 《合并同类项》优质课一等奖课件
- (四级)电子商务师理论考试核心题库及答案(含理论、实操)
评论
0/150
提交评论