备考中考数学考点精讲精练第7讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)(含答案与解析)_第1页
备考中考数学考点精讲精练第7讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)(含答案与解析)_第2页
备考中考数学考点精讲精练第7讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)(含答案与解析)_第3页
备考中考数学考点精讲精练第7讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)(含答案与解析)_第4页
备考中考数学考点精讲精练第7讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)(含答案与解析)_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页【淘宝店铺:向阳百分百】第七讲二次函数表达式的确定(含抛物线的变化)→➊考点精析←→➋真题精讲←考向一待定系数法求函数的解析式考向二二次函数图像的翻折第七讲二次函数表达式的确定(含抛物线的变化)二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2024年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查.→➊考点精析←1、用待定系数法求二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:2、图象的平移:将二次函数y=ax2(a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.⑴将y=ax2的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同.⑵将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.⑶将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.记住规律:左加右减,上加下减→➋真题精讲←考向一待定系数法求解析式1.(2023·四川成都·统考中考真题)如图,二次函数的图象与x轴交于,两点,下列说法正确的是(

A.抛物线的对称轴为直线 B.抛物线的顶点坐标为C.,两点之间的距离为 D.当时,的值随值的增大而增大2.(2023·新疆·统考中考真题)如图,在平面直角坐标系中,直线与抛物线相交于点,.结合图象,判断下列结论:①当时,;②是方程的一个解;③若,是抛物线上的两点,则;④对于抛物线,,当时,的取值范围是.其中正确结论的个数是(

A.4个 B.3个 C.2个 D.1个3.(2023·浙江杭州·统考中考真题)设二次函数,(,是实数).已知函数值和自变量的部分对应取值如下表所示:…0123……11…(1)若,求二次函数的表达式;(2)写出一个符合条件的的取值范围,使得随的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求的取值范围.4.(2023·浙江绍兴·统考中考真题)已知二次函数.(1)当时,①求该函数图象的顶点坐标.②当时,求的取值范围.(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.5.(2023·浙江宁波·统考中考真题)如图,已知二次函数图象经过点和.

(1)求该二次函数的表达式及图象的顶点坐标.(2)当时,请根据图象直接写出x的取值范围.6.(2023·浙江·统考中考真题)已知点和在二次函数是常数,的图像上.(1)当时,求和的值;(2)若二次函数的图像经过点且点A不在坐标轴上,当时,求的取值范围;(3)求证:.考向二二次函数图像的平移(翻折)7.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.

(1)求该抛物线的表达式;(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.8.(2023·四川乐山·统考中考真题)已知是抛物(b为常数)上的两点,当时,总有(1)求b的值;(2)将抛物线平移后得到抛物线.探究下列问题:①若抛物线与抛物线有一个交点,求m的取值范围;②设抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为点E,外接圆的圆心为点F,如果对抛物线上的任意一点P,在抛物线上总存在一点Q,使得点P、Q的纵坐标相等.求长的取值范围.9.(2023·湖南岳阳·统考中考真题)已知抛物线与轴交于两点,交轴于点.

(1)请求出抛物线的表达式.(2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图2,将抛物线向右平移2个单位,得到抛物线,抛物线的顶点为,与轴正半轴交于点,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.10.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为.

(1)当时,求点的坐标;(2)连接,若为直角三角形,求此时所对应的函数表达式;(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.

备战2024中考数学一轮复习备战2024中考数学一轮复习第7讲二次函数表达式的确定(含抛物线的变化)№考向解读第7讲二次函数表达式的确定(含抛物线的变化)№考向解读➊考点精析➋真题精讲➌题型突破➍专题精练第三章函数第七讲二次函数表达式的确定(含抛物线的变化)→➊考点精析←→➋真题精讲←考向一待定系数法求函数的解析式考向二二次函数图像的翻折第七讲二次函数表达式的确定(含抛物线的变化)二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2024年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查.→➊考点精析←1、用待定系数法求二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:2、图象的平移:将二次函数y=ax2(a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.⑴将y=ax2的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同.⑵将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.⑶将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.记住规律:左加右减,上加下减→➋真题精讲←考向一待定系数法求解析式1.(2023·四川成都·统考中考真题)如图,二次函数的图象与x轴交于,两点,下列说法正确的是(

A.抛物线的对称轴为直线 B.抛物线的顶点坐标为C.,两点之间的距离为 D.当时,的值随值的增大而增大【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数的图象与x轴交于,两点,∴∴∴二次函数解析式为,对称轴为直线,顶点坐标为,故A,B选项不正确,不符合题意;∵,抛物线开口向上,当时,的值随值的增大而减小,故D选项不正确,不符合题意;当时,即∴,∴,故C选项正确,符合题意;故选:C.【点睛】本题考查了二次函数的性质,待定系数法求二次函数解析式,抛物线与坐标轴的交点,熟练掌握二次函数的性质是解题的关键.2.(2023·新疆·统考中考真题)如图,在平面直角坐标系中,直线与抛物线相交于点,.结合图象,判断下列结论:①当时,;②是方程的一个解;③若,是抛物线上的两点,则;④对于抛物线,,当时,的取值范围是.其中正确结论的个数是(

A.4个 B.3个 C.2个 D.1个【答案】B【分析】根据函数图象直接判断①②,根据题意求得解析式,进而得出抛物线与轴的交点坐标,结合图形即可判断③,化为顶点式,求得顶点坐标,进而即可判断④,即可求解.【详解】解:根据函数图象,可得当时,,故①正确;∵在上,∴是方程的一个解;故②正确;∵,在抛物线上,∴解得:∴当时,解得:∴当时,,当时,,∴若,是抛物线上的两点,则;故③正确;∵,顶点坐标为,∴对于抛物线,,当时,的取值范围是,故④错误.故正确的有3个,故选:B.【点睛】本题考查了二次函数图象与性质,待定系数法求二次函数解析式,求二次函数与坐标轴交点坐标,熟练掌握二次函数的性质是解题的关键.3.(2023·浙江杭州·统考中考真题)设二次函数,(,是实数).已知函数值和自变量的部分对应取值如下表所示:…0123……11…(1)若,求二次函数的表达式;(2)写出一个符合条件的的取值范围,使得随的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求的取值范围.【答案】(1);(2)当时,则时,随的增大而减小;当时,则时,随的增大而减小;(3)【分析】(1)用待定系数法求解即可.(2)利用抛物线的对称性质求得抛物线的对称轴为直线;再根据抛物线的增减性求解即可.(3)先把代入,得,从而得,再求出,,,从而得,然后m、n、p这三个实数中,只有一个是正数,得,求解即可.【详解】(1)解:把,代入,得,解得:,∴.(2)解:∵,在图象上,∴抛物线的对称轴为直线,∴当时,则时,随的增大而减小,当时,则时,随的增大而减小.(3)解:把代入,得,∴∴把代入得,,把代入得,,把代入得,,∴,∵m、n、p这三个实数中,只有一个是正数,∴,解得:.【点睛】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.4.(2023·浙江绍兴·统考中考真题)已知二次函数.(1)当时,①求该函数图象的顶点坐标.②当时,求的取值范围.(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.【答案】(1)①;②当时,;(2)【分析】(1)①将代入解析式,化为顶点式,即可求解;②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;(2)根据题意时,的最大值为2;时,的最大值为3,得出抛物线的对称轴在轴的右侧,即,由抛物线开口向下,时,的最大值为2,可知,根据顶点坐标的纵坐标为3,求出,即可得解.【详解】(1)解:①当时,,∴顶点坐标为.②∵顶点坐标为.抛物线开口向下,当时,随增大而增大,当时,随增大而减小,∴当时,有最大值7.又∴当时取得最小值,最小值;∴当时,.(2)∵时,的最大值为2;时,的最大值为3,∴抛物线的对称轴在轴的右侧,∴,∵抛物线开口向下,时,的最大值为2,∴,又∵,∴,∵,∴,∴二次函数的表达式为.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.5.(2023·浙江宁波·统考中考真题)如图,已知二次函数图象经过点和.

(1)求该二次函数的表达式及图象的顶点坐标.(2)当时,请根据图象直接写出x的取值范围.【答案】(1),顶点坐标为;(2)【分析】(1)把和代入,建立方程组求解解析式即可,再把解析式化为顶点式,可得顶点坐标;(2)把代入函数解析式求解的值,再利用函数图象可得时的取值范围.【详解】(1)解:∵二次函数图象经过点和.∴,解得:,∴抛物线为,∴顶点坐标为:;(2)当时,,∴解得:,,

如图,当时,∴.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的顶点坐标,利用图象法解不等式,熟练的运用数形结合的方法解题是关键.6.(2023·浙江·统考中考真题)已知点和在二次函数是常数,的图像上.(1)当时,求和的值;(2)若二次函数的图像经过点且点A不在坐标轴上,当时,求的取值范围;(3)求证:.【答案】(1);(2);(3)见解析【分析】(1)由可得图像过点和,然后代入解析式解方程组即可解答;(2)先确定函数图像的对称轴为直线,则抛物线过点,即,然后再结合即可解答;(3)根据图像的对称性得,即,顶点坐标为;将点和分别代入表达式并进行运算可得;则,进而得到,然后化简变形即可证明结论.【详解】(1)解:当时,图像过点和,∴,解得,∴,∴.(2)解:∵函数图像过点和,∴函数图像的对称轴为直线.∵图像过点,∴根据图像的对称性得.∵,∴.(3)解:∵图像过点和,∴根据图像的对称性得.∴,顶点坐标为.将点和分别代人表达式可得①②得,∴.∴.∴.∴.∴.【点睛】本题主要考查了运用待定系数法求二次函数解析式、二次函数的对称性、解不等式等知识点,掌握二次函数的对称性是解答本题的关键.考向二二次函数图像的平移(翻折)7.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.

(1)求该抛物线的表达式;(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.【答案】(1);(2)取得最大值为,;(3)点的坐标为或或【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线的解析式为,过点作轴于点,交于点,设,则,则,进而根据二次函数的性质即可求解;(3)根据平移的性质得出,对称轴为直线,点向右平移5个单位得到,,勾股定理分别表示出,进而分类讨论即可求解.【详解】(1)解:将点,.代入得,解得:,∴抛物线解析式为:,(2)∵与轴交于点,,当时,解得:,∴,∵.设直线的解析式为,∴解得:∴直线的解析式为,如图所示,过点作轴于点,交于点,

设,则,∴,∵,,∴,∵,∴,∴,∴,∴当时,取得最大值为,,∴;(3)∵抛物线将该抛物线向右平移个单位,得到,对称轴为直线,点向右平移5个单位得到∵平移后的抛物线与轴交于点,令,则,∴,∴∵为平移后的抛物线的对称轴上任意一点.则点的横坐标为,设,∴,,当时,,解得:或,当时,,解得:综上所述,点的坐标为或或.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.8.(2023·四川乐山·统考中考真题)已知是抛物(b为常数)上的两点,当时,总有(1)求b的值;(2)将抛物线平移后得到抛物线.探究下列问题:①若抛物线与抛物线有一个交点,求m的取值范围;②设抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为点E,外接圆的圆心为点F,如果对抛物线上的任意一点P,在抛物线上总存在一点Q,使得点P、Q的纵坐标相等.求长的取值范围.【答案】(1)0;(2)①②【分析】(1)根据,且时,总有,变形后即可得到结论;(2)按照临界情形,画出图象分情况讨论求解即可.【详解】(1)解:由题可知:

时,总有,.则,∴,∴总成立,且,;(2)①注意到抛物线最大值和开口大小不变,m只影响图象左右平移下面考虑满足题意的两种临界情形:(i)当抛物线过点时,如图所示,

此时,,解得或(舍).

(ii)当抛物线过点时,如图所示,

此时,,解得或(舍),综上,,②同①考虑满足题意的两种临界情形:(i)当抛物线过点时,如图所示,

此时,,解得或(舍).

(ii)当抛物线过点时,如图所示,

此时,,解得或0(舍).

综上,如图,由圆的性质可知,点E、F在线段的垂直平分线上.

令,解得,,,,设,,,,,,即,.,即,,【点睛】此题考查了二次函数的图象和性质、垂径定理、解一元二次方程等知识,数形结合和分类讨论是解题的关键.9.(2023·湖南岳阳·统考中考真题)已知抛物线与轴交于两点,交轴于点.

(1)请求出抛物线的表达式.(2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图2,将抛物线向右平移2个单位,得到抛物线,抛物线的顶点为,与轴正半轴交于点,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1);(2);;(3)点的坐标为或【分析】(1)把代入,求出即可;(2)假设存在这样的正方形,过点E作于点R,过点F作轴于点I,证明可得故可得,;(3)先求得抛物线的解析式为,得出,,运用待定系数法可得直线的解析式为,过点作轴于点,连接,设交直线于或,如图2,过点作轴交于点,交抛物线于点,连接,利用等腰直角三角形性质和三角函数定义可得,进而可求得点的坐标.【详解】(1)∵抛物线与轴交于两点,交轴于点,∴把代入,得,解得,∴解析式为:;(2)假设存在这样的正方形,如图,过点E作于点R,过点F作轴于点I,

∴∵四边形是正方形,∴∴∴又∴∴∵∴∴∴;同理可证明:∴∴∴;(3)解:抛物线上存在点,使得.,抛物线的顶点坐标为,将抛物线向右平移2个单位,得到抛物线,抛物线的解析式为,抛物线的顶点为,与轴正半轴交于点,,,设直线的解析式为,把,代入得,解得:,直线的解析式为,过点作轴于点,连接,设交直线于或,如图2,过点作轴交于点,交抛物线于点,连接,则,,,

,,是等腰直角三角形,,,,,是等腰直角三角形,,,,,,,,,∵,,,即点与点重合时,,;,,,,点与点关于直线对称,;综上所述,抛物线上存在点,使得,点的坐标为或.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,正方形的性质等知识,运用数形结合思想解决问题是解题的关键.10.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论