




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市兴县高家村中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题p:x∈R,的否定是
(
)A.
B.
C.
D.
参考答案:B2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是(
)A.3.5
B.-3
C.3
D.-0.5参考答案:B3.下列命题中正确的是
(
)A.一条直线和一个点确定一个平面
B.三点确定一个平面C.三条平行线确定一个平面
D.两条相交直线确定一个平面
参考答案:D略4.已知函数是奇函数,且在区间上单调递减,则上是(
)
A.单调递减函数,且有最小值
B.单调递减函数,且有最大值
C.单调递增函数,且有最小值
D.单调递增函数,且有最大值参考答案:B5.一个动点在圆x2+y2=1上移动时,它与定点(3,0)连线中点的轨迹方程是()A.(x+3)2+y2=4 B.(X﹣3)2+y2=1 C.(X+)2+y2= D.(2x﹣3)2+4y2=1参考答案:D【考点】轨迹方程.【分析】根据已知,设出AB中点M的坐标(x,y),根据中点坐标公式求出点A的坐标,根据点A在圆x2+y2=1上,代入圆的方程即可求得中点M的轨迹方程.【解答】解:设中点M(x,y),则动点A(2x﹣3,2y),∵A在圆x2+y2=1上,∴(2x﹣3)2+(2y)2=1,即(2x﹣3)2+4y2=1.故选D.【点评】此题是个基础题.考查代入法求轨迹方程和中点坐标公式,体现了数形结合的思想以及分析解决问题的能力.6.“”是“”的
(
)
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件参考答案:A略7.已知数列{an}为等比数列,Sn为其前n项和,若a1+a2+a3=3,a4+a5+a6=6,则S12=A.15
B.30
C.45
D.60参考答案:C8.△ABC的两个顶点为A(-4,0),B(4,0),△ABC周长为18,则C点轨迹为(
)(A)(y≠0)
(B)(y≠0)(C)(y≠0)
(D)(y≠0)参考答案:A9.已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有(
)
A、7
B、8
C、9
D、10参考答案:A10.已知i是虚数单位,则在复平面内对应的点位于A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:A,在复平面内对应的点为(),所以位于第一象限。故选A。
二、填空题:本大题共7小题,每小题4分,共28分11.已知为等差数列,为其前项和,若,当取最大值时,
.参考答案:3或412.六个人排成一排,丙在甲乙两个人中间(不一定相邻)的排法有__________种.参考答案:240略13.若函数图像的一条对称轴为,则实数m的值为
参考答案:
14.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.参考答案:1和3.根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.
15.已知直线l的参数方程为(t为参数),圆C的参数方程为(为参数).若直线l与圆C有公共点,则实数a的取值范围是__________.参考答案:试题分析:∵直线的普通方程为,圆C的普通方程为,∴圆C的圆心到直线的距离,解得.考点:参数方程与普通方程的转化、点到直线的距离.16.设、是平面直角坐标系(坐标原点为)内分别与轴、轴正方向相同的两个单位向量,且,,则的面积等于
.
参考答案:17.双曲线的渐近线方程为________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知点M(3,1),直线ax﹣y+4=0及圆(x﹣1)2+(y﹣2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax﹣y+4=0与圆相切,求a的值;(3)若直线ax﹣y+4=0与圆相交于A,B两点,且弦AB的长为,求a的值.参考答案:【考点】直线与圆相交的性质.【分析】(1)点M(3,1)在圆(x﹣1)2+(y﹣2)2=4外,故当x=3时满足与M相切,由此能求出切线方程.(2)由ax﹣y+4=0与圆相切知=2,由此能求出a.(3)圆心到直线的距离d=,l=2,r=2,由r2=d2+()2,能求出a.【解答】解:(1)∵点M(3,1)到圆心(1,2)的距离d==>2=圆半径r,∴点M在圆(x﹣1)2+(y﹣2)2=4外,∴当x=3时满足与M相切,当斜率存在时设为y﹣1=k(x﹣3),即kx﹣y﹣3k+1=0,由,∴k=.∴所求的切线方程为x=3或3x﹣4y﹣5=0.(2)由ax﹣y+4=0与圆相切,知=2,解得a=0或a=.(3)圆心到直线的距离d=,又l=2,r=2,∴由r2=d2+()2,解得a=﹣.19.命题p:“方程x2+kx+=0没有实数根”(k∈R);命题q:y=log2(kx2+kx+1)定义域为R,若命题p∨q为真命题,p∧q为假命题,求实数k的取值范围.参考答案:【考点】命题的真假判断与应用.【分析】直接求出p,q两个命题成立时的k的范围,然后利用p∨q为真命题,p∧q为假命题,得到命题p,q一个为真,一个为假.即可求解结果.【解答】(本小题满分12分)解:p:由(k﹣3)(k+3)<0得:﹣3<k<3…,q:令t=kx2+kx+1,由t>0对x∈R恒成立.…(1)当k=0时,1>0,∴k=0符合题意.…(2)当k≠0时,,由△=k2﹣4×k×1<0得k(k﹣4)<0,解得:0<k<4…综上得:q:0≤k<4.…因为p∨q为真命题,p∧q为假命题,所以命题p,q一个为真,一个为假.…∴或…∴﹣3<k<0或3≤k<4…说明:k=0没讨论其它将错就错对的扣20.设函数。(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间(-1,1)内单调递增,求的取值范围。
参考答案:解:(I)曲线在点(0,f(0))处的切线方程为。……….4分(II)由得。………….5分若k>0,则当当。………….7分若k<0,则当当。…………..9分(III)由(II)知,若k>0,则当且仅当;若k<0,则当且仅当。综上可知,时,的取值范围是。21.已知实数a,b满足:关于x的不等式|x2+ax+b|≤|2x2-4x-16|对一切x∈R均成立
(1)验证a=-2,b=-8满足题意;(2)求出满足题意的实数a,b的值,并说明理由;
(3)若对一切x>2,都有不等式x2+ax+b≥(m+2)x-m-15成立,求实数m的取值范围。参考答案:解析:(1)当a=-2,b=-8时,所给不等式左边=x2+ax+b|=|x2-2x-8|≤2|x2-2x-8|=|2x2-4x-16|=右边
∴此时所给不等式对一切x∈R成立
(2)注意到2x2-4x-16=0x2-2x-8=0(x+2)(x-4)=0x=-2或x=4∴当x=-2或x=4时|2x2-4x-16|=0
∴在不等式|x2+ax+b|≤|2x2-4x-16|中分别取x=-2,x=4得
又注意到(1)知当a=-2,b=-8时,所给不等式互对一切xR均成立。∴满足题意的实数a,b只能a=-2,b=-8一组
(3)由已知不等式x2-2x-8≥(m+2)x-m-15对一切x>2成立x2-4x+7≥m(x-1)对一切x>2成立①
令②则(1)m≤g(x)的最小值
又当x>2时,x-1>0
(当且仅当时等号成立)
∴g(x)的最小值为6(当且仅当x=3时取得)③∴由②③得m≤2∴所求实数m的取值范围为(-∞,2]
22.(本小题满分10分)证明:对于任意实数x,y都有x4+y4≥xy(x+y)2.参考答案:(分析法)要证x4+y4≥xy(x+y)2,只需证明2(x4+y4)≥xy(x+y)2,即证2(x4+y4)≥x3y+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位维修家具合同范本
- 写字楼招商服务合同范例
- 共享花园出租合同范本
- 单位设备维修合同范本
- 兼职上课合同范本
- 代客操盘合同 合同范本
- 人民医院护士聘用合同范本
- 医用制氧机转让合同范本
- 借款房屋合同范本
- 养生馆三个合伙人合同范本
- 2025年中国国投高新产业投资集团招聘笔试参考题库含答案解析
- 2024-2025学年小学美术一年级下册(2024)岭南版(2024)教学设计合集
- 《研学旅行课程设计》课件-研学课程设计计划
- 年产10吨功能益生菌冻干粉的工厂设计改
- 苏州大学应用技术学院财务管理
- 2022年新目标英语七年级期末考试质量分析
- 北师大版五年级数学下册导学案全册
- 台球俱乐部助教制度及待遇
- 医院护士劳动合同
- 医师聘用证明.doc
- 核物理实验方法全册配套最完整精品课件
评论
0/150
提交评论