版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市白沙中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为16,28,则输出的a=()A.0 B.2 C.4 D.14参考答案:C【考点】程序框图.【专题】计算题;图表型;分类讨论;算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=16,b=28,不满足a>b,则b变为28﹣16=12,由b<a,则a变为16﹣12=4,由a<b,则,b=12﹣4=8,由a<b,则,b=8﹣4=4,由a=b=4,则输出的a=4.故选:C.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.2.已知抛物线C:与直线.“”是“直线与抛物线C有两个不同的交点”的()A.必要不充分条件
B.充分不必要条件 C.充要条件 D.既不充分也不必要条件参考答案:A3.函数的定义域为(
)A.
B.C.
D.参考答案:D4.用反证法证明命题:“若a,b,c为不全相等的实数,且a+b+c=0,则a,b,c至少有一个负数”,假设原命题不成立的内容是()A.a,b,c都大于0 B.a,b,c都是非负数C.a,b,c至多两个负数 D.a,b,c至多一个负数参考答案:B【考点】R9:反证法与放缩法.【分析】用反证法证明数学命题时,应先假设结论的否定成立.【解答】解:“a,b,c中至少有一个负数”的否定为“a,b,c都是非负数”,由用反证法证明数学命题的方法可得,应假设“a,b,c都是非负数”,故选:B.【点评】本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.5.中,“”是“”的(
)(A)必要不充分条件
(B)充分必要条件(C)充分不必要条件
(D)既不充分也不必要条件参考答案:C6.(多选题)若直线l与曲线满足以下两个条件:点在曲线上,直线l方程为;曲线在点附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列选项正确的是(
)A.直线在点处“切过”曲线B.直线在点处“切过”曲线C.直线在点处“切过”曲线D.直线点处“切过”曲线参考答案:AC【分析】对四个选项逐一判断直线是否是曲线在点的切线方程,然后结合图像判断直线是否满足“切过”,由此确定正确选项.【详解】对于A选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处“切过”曲线,故A选项正确.对于B选项,曲线,,,所以曲线在点的切线方程为,故B选项错误.对于C选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处“切过”曲线,故C选项正确.对于D选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处没有“切过”曲线,故D选项错误.故选:AC【点睛】本小题主要考查曲线的切线方程,考查数形结合的数学思想方法,属于基础题.7.已知命题p:“x∈[1,2],x2-a≥0”,命题q:“x∈R,x2+2ax+2-a=0”,若命题“pq”是真命题,则实数a的取值范围是(
)A.
(-∞,-2]∪{1}
B.(-∞,-2]∪[1,2]
C.
[1,+∞)
D.[-2,1]参考答案:A8.已知椭圆的方程为为其左、右焦点,为离心率,为椭圆上一动点,则有如下说法:①当时,使为直角三角形的点有且只有4个;②当时,使为直角三角形的点有且只有6个;③当时,使为直角三角形的点有且只有8个;以上说法中正确的个数是(
)A.0
B.1
C.2
D.3参考答案:D
考点:椭圆的几何性质.【方法点晴】本题主要考查了椭圆的几何性质问题,其中解答中涉及椭圆的标准方程及其简单的几何性质,椭圆的离心率等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及数形结合思想的应用,本题的解答中,根据椭圆的离心率的取值范围,得出椭圆的短轴的顶点构成的角的取值范围是解答的关键,属于中档试题.9.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acosB+bcosA=csinC,S=(b2+c2﹣a2),则∠B=()A.90° B.60° C.45° D.30°参考答案:C【考点】余弦定理的应用.【专题】计算题.【分析】先利用正弦定理把题设等式中的边转化成角的正弦,化简整理求得sinC的值,进而求得C,然后利用三角形面积公式求得S的表达式,进而求得a=b,推断出三角形为等腰直角三角形,进而求得∠B.【解答】解:由正弦定理可知acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(A+B)=2RsinC=2RsinC?sinC∴sinC=1,C=.∴S=ab=(b2+c2﹣a2),解得a=b,因此∠B=45°.故选C【点评】本题主要考查了正弦定理的应用.作为解三角形常用的定理,我们应熟练记忆和掌握正弦定理公式及其变形公式.10.数列{an}中,an+1=,a1=2,则a4为()A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若关于x的不等式|a﹣1|≥(|2x+1|+|2x﹣3|)的解集非空,则实数a的取值范围是.参考答案:(﹣∞,﹣3]∪[5,+∞)【考点】绝对值不等式.【分析】把不等式转化为最值,求出a的范围即可.【解答】解:关于x的不等式|a﹣1|≥|2x+1|+|2x﹣3|的解集非空等价于|a﹣1|≥(|2x+1|+|2x﹣3|)min=4,所以a﹣1≥4或a﹣1≤﹣4,所以实数a的取值范围是(﹣∞,﹣3]∪[5,+∞).故答案为:(﹣∞,﹣3]∪[5,+∞).12.曲线C是平面内与两个定点F1(-1,0)与F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹,给出下列三个结论:(1)曲线C过坐标原点;(2)曲线C关于坐标原点对称;(3)若点p在曲线C上,则三角形F1PF2的面积不大于。其中所有正确结论的序号是______参考答案:13.设A={x|x2-4x+3≤0},B={x|x2-ax<x-a},若A是B的必要不充分条件,则实数a的取值范围是
.参考答案:[1,3]略14.某程序框图如图所示,该程序运行后输出的的值是 。参考答案:15.如图所示,在三棱柱ABC﹣A1B1C1中,AA1⊥底面A1B1C1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1=,P是BC1上一动点,则A1P+PC的最小值是.参考答案:【考点】棱柱的结构特征.【分析】连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,利用两点之间线段最短,即可求出满足条件的P的位置,然后利用余弦定理即可求解.【解答】解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,连A1C,则A1C的长度就是所求的最小值.在三棱柱ABC﹣A1B1C1中,AA1⊥底面A1B1C1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1=,∴BC1=2,A1C1=2,A1B=2,BC=1,CC1=,即∠A1C1B=90°,∠CC1B=30°,∴∠A1C1C=90°+30°=120°,由余弦定理可求得A1C2==,∴A1P+PC的最小值是,故答案为:.16.已知,则▲参考答案:117.已知一列数1,1,2,3,5,……,根据其规律,下一个数应为
.参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:件)与销售价格x(单位:元/件)满足关系式,其中3<x<6,a为常数已知销售价格为5元/件时,每日可售出该商品11件.
(I)求a的值;
(II)若该商品的成本为3元/件,试确定销售价格x的值,使该商场每日销售该商品所获得的利润最大。参考答案:19.设,其中.1)若与直线y=x平行,求的值;2)若当,恒成立,求的取值范围.参考答案:.解:(1)由题意可知:,则k=,解得:,
(2)由于,恒成立,则,即
由于,则1
当时,在处取得极大值、在处取得极小值,
则当时,,解得:;2
当时,,即在上单调递增,且,
则恒成立;
3
当时,在处取得极大值、在处取得极小值,则当时,,解得:综上所述,的取值范围是:.略20.已知函数在处取得极值为(1)求a、b的值;(2)若有极大值28,求在上的最大值和最小值.参考答案:(Ⅰ)因故
由于在点处取得极值故有即,化简得解得(Ⅱ)由(Ⅰ)知
,令,得当时,故在上为增函数;当时,故在上为减函数当时,故在上为增函数。由此可知在处取得极大值,在处取得极小值由题设条件知得此时,因此上的最小值为,最大值为f(-2)=28。略21.参考答案:22.(本小题满分12分)如图,四棱锥中,底面为矩形,底面,,点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云制造服务行业营销策略方案
- 广告材料制作行业相关项目经营管理报告
- 家用电动打蜡机产业链招商引资的调研报告
- 为第人创建设计开发和维护网站行业营销策略方案
- 发行预付费代金券行业市场调研分析报告
- 心理治疗服务行业市场调研分析报告
- 冷链智能包装行业相关项目经营管理报告
- 人工智能在医疗行业营销策略方案
- 电竞产业全解析-洞察电子竞技的未来趋势
- 定制生产假发套行业市场调研分析报告
- 基督教追悼会悼词 一个母亲去世追悼词3篇
- Creo-7.0基础教程-配套课件
- 幼儿园玩具安全教育(儿童版)
- 网课-文化之旅答案
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 小学数学《倍的认识》教案基于学科核心素养的教学设计及教学反思
- 高中生如何交往人际关系主题班会课件
- GB/T 20638-2023步进电动机通用技术规范
- 四年级作文-记一次活动之有趣的抢凳子游戏(课堂PPT)
- 国企领导人员管理暂行规定
- 高校学生干部培训会新闻稿
评论
0/150
提交评论