四川省乐山市中区剑峰中学高二数学文下学期期末试卷含解析_第1页
四川省乐山市中区剑峰中学高二数学文下学期期末试卷含解析_第2页
四川省乐山市中区剑峰中学高二数学文下学期期末试卷含解析_第3页
四川省乐山市中区剑峰中学高二数学文下学期期末试卷含解析_第4页
四川省乐山市中区剑峰中学高二数学文下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省乐山市中区剑峰中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.i是虚数单位,复数=()A.2﹣i B.2+4i C.﹣1﹣2i D.1+2i参考答案:D【考点】复数代数形式的乘除运算.【分析】通过分子分母同时乘以(1+i),计算即得结论.【解答】解:=?=1+2i,故选:D.2.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(

)A.32 B.16 C. D.参考答案:D【分析】根据三视图可知几何体为一个三棱柱切掉一个三棱锥,分别求解出三棱柱和三棱锥的体积,作差即可得到结果.【详解】由三视图可知,几何体为一个三棱柱切掉一个三棱锥如下图所示:则为中点,所求几何体体积:本题正确选项:【点睛】本题考查多面体体积的求解问题,关键是能够通过割补的方式来进行求解.3.设p:|4x﹣3|≤1;q:x2﹣(2a+1)x+a(a+1)≤0.若┐p是┐q的必要而不充分条件,则实数a的取值范围是()A.[0,] B.(0,) C.(﹣∞,0]∪[,+∞) D.(﹣∞,0)∪(,+∞)参考答案:A【考点】命题的否定;必要条件、充分条件与充要条件的判断.【分析】先化简命题p,q即解绝对值不等式和二次不等式,再求出┐p,┐q,据已知写出两集合端点的大小关系,列出不等式解得.【解答】解:∵p:|4x﹣3|≤1,∴p:≤x≤1,∴┐p:x>1或x<;∵q:x2﹣(2a+1)x+a(a+1)≤0,∴q:a≤x≤a+1,┐q:x>a+1或x<a.又∵┐p是┐q的必要而不充分条件,即┐q?┐p,而┐p推不出┐q,∴?0≤a≤.故选项为A.4.过抛物线y2=x的焦点作倾斜角为30°的直线与抛物线交于P、Q两点,则|PQ|=() A. B.2 C.3 D.1参考答案:B【考点】抛物线的简单性质. 【专题】方程思想;分析法;圆锥曲线的定义、性质与方程. 【分析】求得抛物线的焦点,设出P,Q的坐标,由抛物线的定义可得|AB|=x1+x2+p,求出直线PQ的方程代入抛物线的方程,运用韦达定理,计算即可得到所求值. 【解答】解:y2=x的焦点为(,0), 设P(x1,y1),Q(x2,y2), 由抛物线的定义可得|AB|=x1+x2+p=x1+x2+, 由直线PQ:y=(x﹣)代入抛物线的方程可得, x2﹣x+=0,即有x1+x2=, 则|AB|=+=2. 故选:B. 【点评】本题考查抛物线的弦长的求法,注意运用联立直线方程和抛物线的方程,运用韦达定理,同时注意抛物线的定义的运用:求弦长,属于中档题. 5.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0距离等于1,则半径r的取值范围是().A.(4,6)

B.[4,6)

C.(4,6]

D.[4,6]参考答案:A6.入射光线线在直线:上,经过轴反射到直线上,再经过轴反射到直线上,则直线的方程为()A.

B.C.

D.参考答案:B7.函数的图象是(

)A. B.C. D.参考答案:A【分析】根据已知中函数的解析式,利用导数法分析出函数的单调性及极值,比照四个答案函数的图象,可得答案.【详解】∵,∴,令得;当时,,即函数在内单调递减,可排除B,D;又时,,排除C,故选A.【点睛】本题考查的知识点是函数的图象,分析出函数的单调性是解答的关键,属于中档题.8.k为任意实数,直线(k+1)x-ky-1=0被圆截得的弦长为()A.4

B.8

C.2

D.与k有关的值参考答案:A9.如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,其中茎为十位数,叶为个位数,甲、乙两人得分的中位数为X甲、X乙,则下列判断正确的是()A.X乙﹣X甲=5,甲比乙得分稳定B.X乙﹣X甲=5,乙比甲得分稳定C.X乙﹣X甲=10,甲比乙得分稳定D.X乙﹣X甲=10,乙比甲得分稳定参考答案:D【考点】茎叶图.【专题】数形结合;定义法;概率与统计.【分析】根据茎叶图中的数据,求出甲、乙二人的中位数以及数据分布的稳定性.【解答】解:分析茎叶图可得:甲运动员的得分为:8,13,14,16,23,26,28,33,38,39,51共11个,中位数是26,且分布较分散些,不稳定;乙运动员的得分为:18,24,25,31,31,36,36,37,39,44,50共11个,中位数是36,且分布较集中些,相对稳定些;所以X乙﹣X甲=10,乙比甲得分稳定.故选:D.【点评】本题考查了茎叶图的应用问题,从茎叶图中提取数据是利用茎叶图解决问题的关键,是基础题目.10.设双曲线的﹣个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. B. C. D.参考答案:D【考点】双曲线的简单性质;两条直线垂直的判定.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.二、填空题:本大题共7小题,每小题4分,共28分11.(5分)已知cosx﹣sinx=,则sin2x的值为.参考答案:∵cosx﹣sinx=,∴两边平方,可得1﹣sin2x=∴sin2x=故答案为12.有下列几个命题:①函数y=2x2+x+1在(0,+∞)上是增函数;②函数y=在(-∞,-1)∪(-1,+∞)上是减函数;③函数y=的单调区间是[-2,+∞);④已知f(x)在R上是增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b).其中正确命题的序号是______________参考答案:13.在中,已知,若分别是角所对的边,则的最小值为__▲

_.参考答案:【知识点】正弦定理、余弦定理、基本不等式【答案解析】解析:解:因为,由正弦定理及余弦定理得,整理得,所以,当且仅当a=b时等号成立.即的最小值为.【思路点拨】因为寻求的是边的关系,因此可分别利用正弦定理和余弦定理把角的正弦和余弦化成边的关系,再利用基本不等式求最小值.14.中,三个内角、、成等差数列且,则外接圆半径为

.参考答案:15.设函数在(1,g(1))处的切线方程是,则y=在点(1,f(1))处的切线方程为

。参考答案:略16.已知双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为

参考答案:略17.已知直线交抛物线于A、B两点,若该抛物线上存在点C,使得为直角,则的取值范围为___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=,其中,.(1)求函数f(x)的最小正周期及单调区间;(2)设△ABC的内角A、B、C所对的边分别为a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a、b值.参考答案:【考点】余弦定理的应用;平面向量数量积的运算.【专题】综合题;函数思想;综合法;三角函数的图像与性质;解三角形;平面向量及应用.【分析】(1)运用向量的数量积的坐标表示和二倍角公式,及两角差的正弦公式,化简f(x),再由周期公式和正弦函数的单调区间,解不等式即可得到所求;(2)设△ABC中,由f(C)=0,可得sin(2C﹣)=1,根据C的范围求得角C的值,再利用正弦定理和余弦定理求得a、b的值.【解答】解:(1)f(x)==cosx(sinx﹣cosx)﹣1+=sin2x﹣(1+cos2x)﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,即有函数f(x)的最小正周期为T==π,由2kπ﹣≤2x﹣≤2kπ+,可得kπ﹣≤x≤kπ+,k∈Z,由2kπ+≤2x﹣≤2kπ+,可得kπ+≤x≤kπ+,k∈Z,即有增区间为,减区间为,k∈Z;(2)f(C)=0,即为sin(2C﹣)=1,由0<C<π,即有2C﹣=,解得C=.由sin(A+C)=2sinA,即sinB=2sinA,由正弦定理,得=2①.由余弦定理,得c2=a2+b2﹣2abcos,即a2+b2﹣ab=9②,由①②解得a=,b=2.【点评】本题主要考查向量的数量积的坐标表示和三角恒等变换、正弦函数的周期性、单调性、正弦定理和余弦定理的应用,属于中档题.19.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列,并求李明在一年内领到驾照的概率.

参考答案:.解:的取值分别为1,2,3,4. ,表明李明第一次参加驾照考试就通过了,故P()=0.6. ,表明李明在第一次考试未通过,第二次通过了,故ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故ξ=4,表明李明第一、二、三次考试都未通过,故∴李明实际参加考试次数ξ的分布列为ξ1234P0.60.280.0960.024.李明在一年内领到驾照的概率为

1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976.

略20.已知函数f(x)=+sinx,求f(﹣2)+f(﹣1)+f(0)+f(1)+f(2)的值.参考答案:5根据条件求出函数f(x)+f(﹣x)=2,进行求解即可.解:∵f(x)+f(﹣x)=,且f(0)=1,∴f(﹣2)+f(﹣1)+f(0)+f(1)+f(2)=5.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论